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Dear reader, 
 
You are about to read a publication of the new methodological series of Statistics Belgium, the 
Belgian National Institute for Statistics. This series is called “Statistics Belgium Working Papers”. 
Our intention is to provide our users and everyone who in business and academic life engages in 
statistics, with studies, reports and preparatory documents. We also wish to give our staff, 
statisticians, methodologists and others a chance to disseminate their ideas and the results of their 
work. 
These working papers aim to contribute to the development of statistical knowledge and the 
exchange of ideas. 
As working papers, they will not reflect the official view of either Statistics Belgium (INS-NIS) or 
the Belgian Government. The authors only should be held responsible for their content. 
Statistics Belgium launches this initiative hoping to raise the level of discussions on statistical 
needs and methods, and to ensure a better dissemination of ideas and conclusions. 
As a matter of convenience, Statistics Belgium Working Papers will be issued in the language of 
the original paper. 
The staff and all the officials of Statistics Belgium, and especially the authors, are anxious to 
receive any comment or question on this paper. 
 
 
 
 Brussels, 

 Claude CHERUY 
Director-General, 
Statistics Belgium 
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During the last decade, the literature on calibration (or (up-)weighting, grossing(-up)), has vastly been 
growing. At the start of the nineties, some influential works were published. Model Assisted Survey 
Sampling from C.-E. Särndal, B. Swensson en J. Wretman, which appeared in 1992, is undoubtedly 
one of the most important reference works for the survey statistician; the book is often called “The 
bible of survey statistics”, or “The yellow book”. In this book the authors create a uniform framework 
for the theoretical treatment of survey statistics. It encloses a review, within a single framework, of 
survey methodology as it has been developed by themselves and by many other eminent researchers 
before them. Moreover, they offered an efficient tool for future developments of that methodology. 
Within the theory of generalised regression (GREG) estimation, they also treat calibration techniques. 
In the same year, 1992, an article entitled Calibration Estimators in Survey Sampling, from J.-C. 
Deville and C.-E. Särndal, was published in JASA. This leading article suddenly opened an even 
broader class of calibration techniques, of which GREG estimation is a sub-class. Many researchers, 
theoreticians and practitioners, all around the world in public statistical institutes and universities, 
have since then been inspired by the JASA-article, which resulted in a long series of studies on 
calibration. Apart from the statistical theory of the generalised calibration model, it is important for the 
present study to notice that Deville and Särndal based their treatment on the fact that, for a given 
sample, the calibrated weights can be found as the solution of a “convex mathematical programming 
problem”. The latter idea is central in our study. 
 
Indeed, theoretical as well as practical parts of this text are based on that convex mathematical 
program – which we call the calibration problem (CP) hereafter – that allows to compute the 
calibrated weights. The theory in this report is not a statistical theory of calibration, but rather a 
theoretical approach of various aspects of the numerical solution of the CP. Our knowledge about 
operations research and (linear) regression was very helpful in that respect. Searching for a rigorous 
mathematical formulation, we ended up with a matrix formulation of the CP, a “language” which 
proved to be very efficient for our purposes. As a result, we achieved a better theoretical 
understanding, which in turn resulted in some new developments, which were interesting and helpful 
both from the theoretical point of view and from the practical one. In fact, it would have been simply 
impossible for the author to treat, within the assigned time period, so many specific surveys, if he 
could not have based his reasoning on such a powerful formulation. We now try to explain this in 
more detail by giving an overview of the different chapters in this study. 
 
Chapter I presents the statistical definition of calibration estimates of totals of random variables, i.e. as 
weighted sums of obrserved values of the variable; the weights in this sum are the calibrated weights, 
which have to satisfy certain linear constraints, the calibration constraints. Next we discuss some 
popular estimation techniques and show that they fit into the calibration framework. These traditional 
techniques are: (1°) the post-stratification technique, which assures that, within each post-stratum, the 
estimated population size equals a pre-specified value, (2°) the raking (ratio) technique, in which 
weights are such that marginal constraints in a cross-tabulation are satisfied, and (3°) the ratio 
estimation technique, which assures that, for a given auxiliary variable (a proxy for the study variable), 
the estimated total equals a given value. At Statistics Belgium, (almost) only the post-stratification 
estimation technique has been applied until now. 
 
In the second chapter, we present “a” theory of generalised calibration. We discussed this already here 
before. Chapter II is the most mathematical part of the text, and may therefore be less appealing to 
some readers. For the author, however, it covers and reflects an important part of the work. The 
mathematical approach, building on matrix theory, on mathematical programming, and on linear 
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regression, finally resulted into a compact formulation of the CP. In section II.C, this led to a proposal 
for a solution to the supplementary problem of determining an extreme lower bound L and an extreme 
upper bound U for the correction factors (i.e. the ratios between the calibrated weights and the initial 
weights) for certain sub-classes of the CP. Chapter II further deals with the existence and uniqueness 
of the solution to the CP, and finally with the general algorithm that is the core of our software g-
CALIB-S. This algorithm, as well as its mathematical justification, takes largely advantage of the 
properties of generalised inverses of matrices. If we could not have used that mathematical device, 
then our own implementation, in SPSS® 9.0, for calculation of calibrated weights would not have been 
very original, and would moreover have been useless, as well as virtually impossible to be realised. 
 
Chapter III brings the reader back to statistics. We there return to more traditional methods, discussed 
already in chapter I. On the other hand, without being occupied by specific practical extrapolation 
problems, we demonstrate various ingenious applications of generalised calibration. Of course, this 
brings us back to other researchers’ findings for complex situations. One of the strengths of this report, 
in our opinion, is the way the problem is treated formally, which makes it possible to make new 
derivations, in an abstract but controlled way, and to implement these later in a practical problem. Of 
course, we do not want to state that theory precedes practice! Indeed, statistical methodology starts 
with real-life statistical problems. It can however not be argued that one of them is more important 
than the other. But it is definitely true that a good understanding of a concrete problem is only possible 
within a suitable framework, or model. An excellent illustration is our discussion in part III.E about 
simultaneous calibration on external information available at two levels. An important summarising 
table in that context is table 3.8 in section III.E. This table can be used as an outline or aide-mémoire 
when setting up an application of calibration. 
 
The central topic of this report in fact is our software g-CALIB-S, developed with SPSS® syntax 
language. This software resulted from the need to have access to a tool for improved calibration, using 
more external information when estimating from surveys. Statistics Belgium only a few years ago 
purchased SPSS®, so a little experimentation with calibration in SPSS® could not be postponed for a 
long time. With CALMAR (section IV.A.3) as an example, our colleague Etienne Waeytens started the 
implementation of calibration as developed by Deville and Särndal. When the author of this report saw 
the syntax, he immediately proposed an improvement by replacing the matrix fuction inv() with ginv(). 
More matrix functions were then also exploited to create macros for construction of the calibration 
design matrix. This way a thorough “theoretical” study on the one hand, and serious improvements to 
the software tools on the other, were onset. Implementation of the techniques in practice had to be 
delayed for a while: the software first had to be reliable, flexible and user-friendly enough, and the 
author had to study the different calibration problems Statistics Belgium is faced to. 
 
Chapter IV is meant to be a manual for g-CALIB-S. The potential user can find in that chapter how the 
software has to be used, how s/he has to prepare the data that will be input to the software, and how to 
interpret and use the results that are produced by the software. The chapter closes with some 
comments on the software, pointing to some weaknesses of g-CALIB-S, but also to possible future 
developments, either to improve or to extend our syntax modules. 
 
Chapter V is then devoted to implementation of generalised calibration, and consequently the software 
g-CALIB-S, in daily statistical practice at Statistics Belgium. The author invited the responsible 
statisticians in different statistical departments to propose practical applications of calibration, after 
instructing them about the contents of the project. Many practical problems were put forward. 
Unfortunately, they could not all be studied before the deadline for this report, so that only a few are 
discussed in chapter V. From the beginning it was stipulated that the main goal was to find out how 
current extrapolation practices fit into the generalised calibration framework, and to reproduce figures 
that were obtained earlier. The author benefited a lot from this task, since he was forced to understand 
the various problems in detail, which often resulted in an improvement of the theoretical framework or 
model. And the task has been successfully “finished”. However, we decided not to reproduce simply 
figures obtained earlier, but to concentrate more on making suggestions for future work on calibration, 
since the latter seemed much more interesting. 
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The most interesting applications being dealt with are the Time Use Survey (TUS) in section V.D, 
“generalised raking” of data on labour volume and labour compensation (LVC) in section V.F, and 
the Structural Business Survey of enterprises (SBS) in section V.G. The first application (TUS) is an 
illustration of using auxiliary information at two levels (here: households and individuals). It discusses 
sophisticated and powerful calibration techniques, which will be useful for many other surveys too. 
The second application (LVC) is a special one, due to the fact that the data were presented in cross-
tabulation format. A study of this application resulted in the discussion in section III.C (and in some 
sense also in section III.D). The LVC problem therefore broadened our understanding of the problem 
of calibration, which could not have been predicted when we first saw the data. The SBS case in 
another way contributed to better insight into the problem: we had to tackle here the problem of over-
coverage of the sampling frame and how it is up to now being dealt with in the context of calibration. 
 
The Travel Survey (TS) takes a special place in this report. Since we finally had access to a well-
designed basic data file for this survey, we were able to show that preparatory work on the data, to 
make them ready for calibration, does not have to be that hard. Given a well-structured and well-
documented database, it is possible to set up a systematic and extensive preparation of data, which 
may be reflected in SPSS® syntax files. Such programs, which are merely the implementation of 
procedures and algorithms, can be used in and be adapted to other circumstances (at other time points, 
or for other surveys) if necessary. So we can build on experience from the past.  
 
The reader will not find many tables with figures in this report. That is because this study is first of all 
a methodological one. This means that we have to point out what can be done and how to do it. Partly, 
these instructions can be found in our SPSS® syntax programs, which the reader will find in appendix 
(chapter VII). As a mathematical formula or equation, such programs often tell more about strategies 
than a long verbal description. So the reader is invited to have a look at the programs when s/he wants 
to start an application of generalised calibration. Obviously, these programs (apart from those in 
section VII.A!) are not immediately ready-for-use in other circumstances, but they can serve very well 
as a starting point. It can be noticed that they also need to be improved for the survey for which they 
were intended. 
 
We want to emphasize that the present study aims to initiate a new treatment of surveys at Statistics 
Belgium. A lot of work still has to be done before implementation of the techniques is a fact. 
Therefore we will organise some courses at our institute, both on advanced use of SPSS® and on 
generalised calibration methodology and practice. This explains one of the main purposes of this 
report: to provide our statisticians with some sort of manual or guidance when they start applying the 
techniques in practice. Hence the pragmatic approach of this study. 
 
Finally, we whish to state that this work should be a start of an in-depth study of calibration for each 
survey were the techniques have to be used. We expect that survey specific studies on calibration will 
be published in the future. This should be accompanied with a methodological evaluation of the 
sampling-design, resulting moreover in the systematic and correct calculation of variance estimates, 
which are an important means of quality evaluation for our surveys. 
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I.A GENERALITIES AND NOTATION – THE CALIBRATION PROBLEM 

 
Consider a population U of size N, an initial sample s from U of size n, and a sample r of respondents 
of size m. For simplicity in this chapter we assume that the sample s is drawn by simple random 
sampling (SRS), although this is not a crucial assumption here; the response mechanism need not be 
specified. We have: r s U⊂ ⊂  and 0 < ≤ ≤m n N . The overall sampling fraction is f n N=  and the 

overall response rate or response probability is p m n= . A subscript h (or j, etc) is included in these 
notations wherever sub-populations and corresponding sub-samples are to be considered. 
 
Let y be a study variable or variable of interest, with value yk  for the k-th population element. Our 

main goal is to estimate the population total t yy k
k U

=
∈
∑  of the variable y. A linear estimator for this 

total takes the form 
 

 �t w yy k k
k r

=
∈
∑ , (I.1) 

 
i.e. a weighted sum of available values for the study variable: the sum is over the respondents only. 
The central idea of calibration is to calculate the weights wk  for respondents k r∈  such that one or 
more calibration constraints are satisfied. A calibration constraint takes the general form 
 

 w x tk k
k r

x
∈
∑ = , (I.2) 

 
where x is considered to be a variable, with known value xk  for respondent k, and t x  is a known 
calibration benchmark for that variable. A benchmark often is the total of the variable x for the 
population U, whence the notation t x , consistent with t y . Calibration benchmarks will often be called 

calibration totals; a benchmark can sometimes be an estimate for a population total. 
 
A x-variable in this chapter is always an indicator variable, corresponding to a sub-population of U, 
with value 1 for elements k inside the sub-population and value 0 for elements k outside that sub-
population. An indicator variable is thus a membership variable for the sub-population considered. 
Notice that in regression theory, these variables are often called dummies; they may correspond to 
some category of a qualitative explanatory variable, or to cells induced by a cross-classification by 
several qualitative explanatory variables. A subscript h (or j, etc) will be used in the next sub-sections 
to distinguish indicator variables from each other. 
 
The symbol z is used in this chapter to denote a quantitative variable. The value of this variable for 
respondent k is denoted zk , and a benchmark corresponding to z is denoted tz . 
 
The purpose of this introductory chapter I is to recall that some classical techniques of estimation of 
totals of survey variables y often can be studied as calibration techniques. I.e. we show that commonly 
used estimators for t y  can be written in the form (I.1), with weights that satisfy (I.2). The classical 

techniques considered in this chapter are the post-stratified estimator, the raking estimator and the 
ratio estimator.  Statistical properties of these estimators of totals, such as (un-) biasedness, 
consistency and efficiency are not considered here. By the way, the theory of generalised calibration 
presented in the next chapter too is not a statistical theory! 
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I.B THE POST-STRATIFIED ESTIMATOR 

 
The post-stratified estimator, also called post-hoc stratification estimator by Barnett (1991), is 
discussed at length in most textbooks; see e.g. Cochran (1977) and Särndal et al (1992). This estimator 
is defined as follows, given post-strata indexed by the subscript h = 1, …H : 
 
 �

,t N yy ps h h
h

= ∑ , (I.3) 

 

where y
m

yh
h

k
k rh

=
∈
∑1

 is the observed average of y in the h-th respondent sub-sample. This estimator 

can be rewritten as �

,t
N

m
y

N

m
yy ps

h

h
k

k rh

h

h
k

k rh

= =
∈ ∈
∑∑ ∑ , which has the form (I.1) if w

N

mk
h

h

=  for k rh∈  

and h = 1, …, H. 
 
Now, to each post-stratum h corresponds an indicator variable xh , as pointed out in the preceding sub-

section. The post-stratified estimator of the population total of this indicator variable, which is Nh , is 

then equal to �

,
'' '''

t
N

m
x

N

m
m

N

m
Nx ps

h

h
hk

k rh

h

h
h

h

hh h
hh

h

= = + =
∈ ≠
∑∑ ∑ 0 . In other words, the weights w

N

mk
h

h

=  

satisfy the H calibration constraints, which are of the form (I.2): 
 

 w x N tk hk
k r

h xh

∈
∑ = =      (h = 1, …, H). (I.4) 

 
This proves that the post-stratification estimator is indeed a calibration estimator. The weights 

w
N

mk
h

h

=  are called up-weighting factors, or extrapolation coefficients, in statistical practice; from 

now on we may call them calibrated weights. 
 

Notice that w
N

n

n

m
f pk

h

h

h

h
h h= = − −1 1 , which suggests that extrapolation can be seen as a two-step 

correction procedure, with correction for non-response in the first step (up-weighting from r to s), and 
adjustment for sampling error in the second step (up-weighting from s to U). Moreover, this suggests 
that post-strata ideally should coincide with sub-populations that are homogeneous with respect to 
response behaviour. In other words, the post-strata membership variables xh  should be suitable 
determinants for non-response. 
 
Post-stratification is not only considered in the context of SRS. Often in practice the sampling 
situation is more complex, and care then has to be taken. This will be discussed in more detail in 
section III.B.1. 
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I.C THE RAKING ESTIMATOR 

 
Post-strata may correspond to the categories of a qualitative variable, or to the cells in a cross-
classification by two or more qualitative variables. Consider, for simplicity, only two such 
classification variables, and let subscript i be used to index the categories of one of the variables, and 
subscript j for the other. The post-stratification technique can be used to estimate the total of a study 
variable y if (1°) the sub-samples rij  of respondents are all non-empty and if (2°) the sub-population 

sizes Nij  are all known. 

 
Suppose that at least one of these conditions is not satisfied. Then a possible solution is to use only the 
marginal population counts Ni+  and N j+ , and to apply the iterative method of raking (or iterative 

proportional fitting) to find weights wij  that, at convergence of the iterative procedure, satisfy the 

constraints w
N

Ni
i

+
+=  for all i and w

N

Nj
j

+
+=  for all j, and consequently also w++ = 1. The 

summations denoted by the subscript “+” have to be interpreted as follows. Notice first that wij  is a 

common weight for all elements k rij∈ . Let r ri ij
j

• =� , then the subscript “+” denotes summation over 

all elements in ri• , i.e. w w w m wi ij
k r

ij
k rj

ij ij
ji ij

+
∈ ∈

= = =
•

∑ ∑∑ ∑ ; similar for summation over the index i. 

The raking-ratio estimator for the total of any study variable y is then equal to 
�

,
,

t N w y w yy rak ij k
k ri j

k k
k rij

= =
∈ ∈
∑∑ ∑ , with w Nwk ij=  for all k rij∈ . Hence the raking estimator has the 

form (I.1). The iterative procedure is not fully described here; we refer for instance to Deville et al 
(1993). Notice that there is no explicit algebraic formula for the weights. 
 
To show that the raking-ratio estimator is a calibration estimator, we have to show that the weights wij  

satisfy some calibration constraints. Therefore we only have to show that the above-mentioned 
constraints can be rewritten as calibration constraints. To that end, we define two sets of indicator 

variables: variables xi
( )1 , say, corresponding to the categories of the first classification variable, and 

variables x j
( )2 , say, corresponding to the categories of the second classification variable. It is then easy 

to verify that t x N
x ik

k U
i

i
( )

( )
1

1= =
∈

+∑  for any i and t x N
x jk

k U
j

j
( )

( )
2

2= =
∈

+∑  for any j. Finally, we derive the 

following calibration constraints for the weights wk : 
 

 

w x t i

w x t j

k ik
k r

x

k jk
k r

x

i

j

( )

( )

( )

( )

1

2

1

2

∈

∈

∑
∑

=

=

any  

any  
 (I.5) 

 
This means that the raking estimator is a calibration estimator. More about raking, and its relation to 
post-stratification, will be discussed in sections II.B.2 and III.C. It may be noticed that the raking 
weights are not just any solution of the system (I.5), but a very special one. This will be discussed later 
in the context of generalised calibration. 
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I.D THE RATIO ESTIMATOR 

 
Consider now the situation where a quantitative variable z is known for all respondents k, and the 
population total tz  is known as well. The ratio estimator of the total t y  of a study variable y is defined 

(still under SRS) as 
 

 �

,t
t

x
y w yy rat

x

k
k r

k
k r

k k
k r

= =

∈
∈ ∈∑ ∑ ∑ , (I.6) 

 

with constant weights w
t

x
k

x

k
k r

=

∈
∑ '
'

 ( k r∈ ). To show that this ratio estimator is also a calibration 

estimator, we simply have to notice that the weights are satisfying trivially the single calibration 
constraint 
 

 �

,t w x tx rat k k
k r

x= =
∈
∑ . (I.7) 

 
The ratio estimator works well if the linear (population) regression model E y xk k� � = β  (through the 

origin) fits well. Notice that (I.7) does have many solutions; the one leading to the above constant 
weights (under SRS) is a particular regression estimator if the variance structure of the population 

regression model is determined as V y xk k� � = σ2 . We refer to Särndal et al (1992) for a detailed 

discussion of ratio and regression estimators. 
 
The ratio estimator is thus a particular calibration estimator. However, it is not covered by the theory 
of generalised calibration as presented in this text. That is because we have worked throughout with a 
slightly simplified version of the generalised calibration model introduced by Deville and Särndal 
(1992) and Deville et al (1993). More about this can be found in section II.A; see also IV.C.2.viii.
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II.A THE GENERALISED CALIBRATION PROBLEM AS A MATHEMATICAL OPTIMISATION 
PROBLEM 

 
Consider a probability sample s of size n from a population U of size N. Let the n sample elements be 
selected according to a sampling design with positive first order inclusion probabilities π π1 ,... , N  for 
all elements in U. This means that only random or probability sampling is being dealt with here. 
Where needed we shall also assume that the second order inclusion probabilities πkl ( k l N, , ... ,= 1 ) 
are known. With these two conditions, the sampling design is said to be measurable (Särndal et al, 
1992). 
 
Suppose that measurements on m auxiliary or calibration variables are available for all sample 
elements; let xkj  be the value of the j-th calibration variable for the k-th sample element 

( , ... , ; , ... , )j m k n= =1 1 . It is assumed that qualitative variables are already transformed into sets of 

indicator variables, etc. Finally, the population totals t j mj ( ,... , )= 1  for the calibration variables must 

be available. The calibration problem consists of adjusting some initial weights d k , resulting in 

adjusted or calibrated weights w g dk k k= , where gk  are the adjustment factors or g-weights. The 

initial weights often are the sampling weights 1 / πk , but these could already have been corrected for 
non-response before calibration takes place. Notice that s might be a respondent sample, instead of an 
initial sample. 
 
The generalised calibration problem, i.e. the problem of calculating the calibrated weights or the g-
weights for a given sample s, can be formulated as a non-linear optimisation problem as follows. 

 

(C1) Minimise the distance d G
w

dk
k

kk

n �
��
�
��=

∑
1

, 

(C2) subject to m calibration constraints w x t j mk kj
k

n

j
=

∑ = =
1

1( ,..., ) , 

(C3) and, occasionally, subject to boundary constraints L
w

d
U k nk

k

≤ ≤ =( ,... , )1 , with 

0 1≤ ≤ ≤L U . 
 
 
The so-called distance function G is measuring the difference between the g-weights g w dk k k=  and 
1. This function must satisfy the following regularity conditions: G(.)  is strictly convex and twice 
continuously differentiable (on the interior of its domain); G( )1 0= , G(.) ≥ 0 ; G ' ( )1 0=  and 

G ' ' ( )1 1= . The inverse of the function G '  is called the calibration function F G(.) ' (.)= −1 , whence 
F( )0 1= . 
 
Deville and Särndal (1992) have defined a slightly more general model, by incorporating an additional 
factor / qk  (qk > 0 ) for element k (∈ s) in the objective function in (C1). I.e. to obtain their model we 
should replace (C1) with the following 
 

(C1') Minimise the distance 
d

q
G

w

d
k

k

k

kk

n �
��

�
	
=

∑
1

. 
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The ratio estimator in section I.D is a special case of an estimator for which the calibrated weights are 
based on the calibration problem (C1’)–(C3), but not of (C1)–(C3); see Deville and Särndal (1992). As 
mentioned in section I.D we work throughout this text with the simplified model (C1)–(C3). It would 
however be straightforward to incorporate the factors qk  throughout; see section II.B for more details. 
Our software too can easily be extended: see IV.C.2.viii. 
 
(C3) seems to indicate that the g-weights are scattered around 1 (a g-weight gk  equal to 1 means that 
no correction to the initial weight is needed, for element k). In order to make the above optimisation 
problem feasible, particularly by appropriate specification of the bounds L and U in (C3), a global a 
priori adjustment to the initial weights may be necessary, making the implicit assumption of g-weights 
that are scattered around 1 more plausible. We ignore this secondary problem in our theoretical 
exposition, but have incorporated such an overall correction factor in our software. This factor is 
called the scale (parameter); it is discussed further in section III.A.2. 
 
The distance function G, or, equivalently, the calibration function F, can be chosen conveniently, 
considering practical properties of the resulting g-weights. Deville et al (1993) introduce four different 
“methods” corresponding to four different distance functions: (1) the linear method with quadratic 
distance function and linear calibration function, (2) the raking ratio or multiplicative method with 
exponential calibration function, (3) the truncated linear method with quadratic distance function and 
linear calibration function, and (4) the logit method with logistic calibration function. An overview is 
presented in table 2.1, together with some properties and the corresponding calibration functions. The 
following notation is used: ℜ = −∞ +∞( , ); ℜ = +∞+

0 0( , ). Deville and Särndal (1992) have considered a 
few more distance functions. 
 
 

Table 2.1  Distance function G, additional constraints (C3) and calibration function F for four 
calibration methods: (1) linear method; (2) multiplicative method;(3) truncated 
linear method; (4) logit method 

 
 Distance function G x( )  Additional 

constraint (C3) 
Calibration function F u( )  

(1) x −1

2

2� �
 for x ∈ℜ  

None 1 + u  for u ∈ℜ  

(2) x x xln( ) − +1  for x ∈ℜ +
0  

− +x 1  for x = 0  

None eu   for u ∈ℜ  

(3) x −1

2

2� �
 for  x ∈ℜ  

x L U∈ ,  with 
0 1≤ ≤ ≤L U  

1 + u  for u L U∈ − −1 1,  
L for u = L – 1 
U for u = U – 1 

(4) 
x L

x L

L
U x

U x

U
A− −

−
+ − −

−
�
�


�
��

−� � � �ln ln
1 1

1 

  for x L U∈ ( , ) 
 

U L
U L

U
A− −

−
�
�


�
��

−� � ln
1

1  for x L≤  

 

U L
U L

L
A− −

−
�
�


�
��

−� � ln
1

1  for x U≥  

 
with 0 1≤ < <L U  

None L U U L e

U L e

Au

Au

− + −
− + −

1 1

1 1

� � � �
� � � �

 

  for u ∈ℜ  
 
 
 

where A
U L

U L
= −

− −1 1� �� �
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Often a quadratic function is used, i.e. G x x( ) = −1
2

2
1	 
 ; the calibration method is then said to be 

linear. Estimators based on this method are generalised regression (GREG) estimators. A 
disadvantage of the linear method is that the calibrated weights can be negative. Other choices of G 
can force the calibrated weights being positive. Under the linear method, the additional constraints 
(C3) can be used to restrict the g-weights: this is the truncated linear method (3). Notice that Calmar 
(Sautory, 1993) and Bascula (Nieuwenbroek, 1997) are using different algorithms to implement (C3); 
our implementation is as in Calmar. 
 
The calibration methods (1) to (4) are compared in figures 2.1 and 2.2. Figure 2.1 shows the distance 
functions G. Figure 2.2 shows the calibration functions F. We have set L = .15 and U = 1.4. Notice 
that the domain of the logit distance function is L U, . We will show later that the g-weights gk  are 

equal to F uk� � , where uk  depends on the auxiliary information and the initial weight for sample 

element k. Thus the shape of the calibration function determines the adjustments that are made by the 
calibration technique. The figure shows that methods (1), (3) and (4) are very close to each other 
within some interval for u. Outside this interval methods (3) and (4) are truncating the adjustments 
factors. Method (4) is doing this more smoothly than method (3). Method (2) tends to shift the g-
weights upward in a systematic way, compared with all other methods; the u-range where the value of 
its calibration function is close to that for the other methods is rather small. It may be expected that the 
results from methods (1), (3) and (4) are close, as far as the g-weights are not extreme (i.e. not to much 
different from the central value 1). The results from method (2) may be substantially different. 
 
 
 
 
 

Fig. 2.1  Comparing four types of distance functions G 
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Fig. 2.2  Comparing four types of calibration functions F 
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II.B TERMINOLOGY AND NOTATION 

 
We now introduce some matrix notation. This is used extensively in the sequel, since it makes the 
mathematical treatment more compact. Notice that a lot of mathematical formulations and derivations 
are similar to the mathematics for (linear) regression methodology. So the reader may not completely 
be unaware of the following notations. Anyway, we would like to encourage the reader to learn to read 
the mathematics in the rest of this report, as we believe that it may help him/her to understand more 
thoroughly the procedures of generalised calibration. 
 
We define: 
 

� the auxiliary m-vector for the k-th sample element xk k km
T

x x= 1,...,� � ; 

� the n-vector of initial (sampling) weights d = d dn
T

1,...,� � ; 

� the n-vector of calibrated weights w = w wn
T

1,...,� � ; 

� the n-vector of g-weights g = g gn
T

1 ,... ,	 
 ; 

� the n × m (calibration) design matrix X X X= 1,..., m� � , where X j j nj

T
x x= 1 ,...,� �  is the j-th 

column (i.e. the vector of n measurements on the j-th calibration variable) and xk
T  is the k-th 

row; 
� the m-vector of population totals t = t tm

T
1,...,� � ; 

� the n-vector of 1’s: 1n
T= 1 1,...,� � ; 

� the n × n initial weights matrix D = diag d� �  with k-th diagonal element dk ; 

� the n × n calibrated weights matrix W w= diag� �  with k-th diagonal element wk ; 

� the n × n g-weights matrix G g= diag� � with k-th diagonal element gk ; 

� a vector of zeros 0 = 0 0,...,� �T , whose length follows from the context; 
� the identity matrix I , whose dimension follows from the context. 

 
Notice that, for example, diag n nd� �1 D1 d= = . Then we have W DG GD= =  and 
w W1 Dg Gd= = =n . 
 
The calibration constraints (C2) can then be written as X w tT = , or X 1 tT

nW = , or X tT Dg = , or 

finally 
�

X tT g = , where 
�

X = DX  is the expanded design matrix, i.e. the matrix with elements 

�

x d x
x

ij i ij
ij

i

= =
π

 (provided the initial weights are the sampling weights). These are all linear systems 

with m equations in n “variables” (either the calibrated weights or the g-weights). If the calibration 
system is consistent, then it has at least one solution w *  (or g *). This means that the auxiliary 
information is not over-identifying the weights, or that there is no contradiction in the calibration 
constraints. On the other hand, as we will see later, some of this information may be redundant. 
Formally, this means that the design matrix X  need not be of full rank, although it will be assumed 
that there are more rows than columns in this matrix: n m≥ . 
 
The distance or objective function in (C1) can be written shortly as D d w,� � , to emphasise that some 

distance, D, between the initial weights d and the calibrated weights w, is considered. Notice that 
D d w,� �  is a weighted sum of distance measures G w d G gk k k� � � �= ; the k-th weight in this sum is 

the initial weight d k . Thus: D d G w dk k k
k s

d w,� � � �=
∈
∑  =

∈
∑d G gk k
k s

� � . The quantity G gk� �  measures 

the distance between the initial weight d k  and the calibrated weight wk , or, as mentioned before, 
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between the g-weight gk  and 1. If we now write G G g G gn

T
g� � 	 
 	 
� �= 1 ,..., , then the objective 

function becomes D GTd w d g,� � � �= . 
 
Finally, the additional boundary constraints (C3) can be written shortly as g ∈Ω B, where ΩB is the 

bounded subset L U
n

,  of the Euclidean space ℜ n . If, more generally, ΩB is allowed to be any, 

bounded or unbounded, subset of ℜ n , making it explicit in which area the g-weights are looked after, 
either implicitly through D or explicitly, then any calibration problem (C1-C2) or (C1-C3) can be 
written briefly as 
 

min , ; ,D T
Bd w X w t g� �� �= ∈Ω . 

 
It follows from the above that the calibration problem alternatively can be formulated in terms of the 
g-weights: 
 

min ; ,d g g gT T
BG� �
 �

�

X t= ∈Ω . 

 
More details about the calibration problem, and further specification of the set ΩB is found in the next 
section II.C. 
 
The extended model (C1’)–(C3) (see section II.A) can also be formulated in matrix notation. We 
therefore introduce the matrix Q = diag qk� �, i.e. the diagonal matrix with k-th diagonal element qk . 

Then Q− =1 1diag qk/� � , and the objective function in (C1’) can then be written as d Q gT G−1 � �. So the 
model (C1’)–(C3) can be formulated in matrix notation as 
 

min ; ,d Q g g gT T
BG− = ∈1 � �
 �

�

X t Ω . 
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II.C EXISTENCE AND UNIQUENESS OF A SOLUTION TO THE CALIBRATION PROBLEM – 
THE BOUNDARY PROBLEM 

 
In the previous section, we have formulated the generalised calibration problem as a mathematical 
programming problem, in terms of the g-weights or correction factors g, as follows: 
 

 min ; ,d g g gT T
BG� �
 �

�

X t= ∈Ω  (II.1) 

 

We also define ΩC
n T= ∈ℜ =g g;

�

X t
 �; this does not depend on the calibration method. The set 

Ω ΩC B∩  is the feasible region for the mathematical programming problem (II.1). For each of the 
calibration methods, we can easily specify the feasible region Ω ΩC B∩  first, and, given 

ΩC
n T= ∈ℜ =g g;

�

X t
 �, we then derive the set ΩB. Table 2.2 lists the sets Ω ΩC B∩  and ΩB for the 

four calibration methods (1) to (4). 
 
 

Table 2.2  The feasible region Ω ΩC B∩  and the set ΩB for four calibration methods: 
(1) linear method; (2) multiplicative method; (3) truncated linear method;  
(4) logit method 

 
 Ω ΩC B∩  ΩB 

(1) g g∈ℜ =n T;
�

X t
 � ℜ n  

(2) g g g 0∈ℜ = ≥n T; ,
�

X t
 �  g g 0∈ℜ ≥ = +∞ = ℜ +n n n; ,� � �0  

(3) g g 1 g 1∈ℜ = ≤ ≤n T
n nL U; ,

�

X t
 �  g 1 g 1∈ℜ ≤ ≤ =n
n n

nL U L U; ,� �  

(4) g g 1 g 1∈ℜ = ≤ ≤n T
n nL U; ,

�

X t
 �  g 1 g 1∈ℜ ≤ ≤ =n
n n

nL U L U; ,� �  

 
 
The feasible region Ω ΩC B∩  is defined by a (finite) set of linear equality and/or inequality 
constraints. Hence, this set is convex. The feasible region is also closed. 
 
Since each linear equality constraint – a calibration constraint! – can equivalently be replaced with two 
inequality constraints, the feasible region Ω ΩC B∩  is the intersection of a finite number of half-
spaces, and therefore called a polyhedron (Cameron, 1985, p.31). 
 
It follows from the definition of the (scalar-valued) distance functions G (see table 2.1), that, for any 
calibration method, the objective function d gT G� �  in (II.1) is strictly convex on the corresponding set 
ΩB, and therefore also on the corresponding feasible region Ω ΩC B∩ . Moreover, it is easy to see that 

the reduced problem min ;d g gT
BG� �� �∈Ω  is a trivial one: the solution always exists, is unique, and 

is equal to g 1= n . Notice that we assume throughout that 0 1≤ ≤ ≤L U  for method (3) and 
0 1≤ < <L U  for method (4). It follows then that ΩB never is empty. For n = 2 we have displayed, for 

each calibration method, in figure 2.3, the surface d gT G� �  on a set 0 15 3
2

. , , which contains 12 . 
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Fig. 2.3  The surface d gT G� � , for n = 2, on the set 0 15 3
2
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(1) linear method and (3) truncated linear method 
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(2) multiplicative method 
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(4) logit method 
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The calibration system 
�

X tT g =  can, in principle, be inconsistent. In other words, 

ΩC
n T= ∈ℜ =g g;

�

X t
 � can be empty. Then, the feasible region is empty and the optimisation 

problem has no solution at all; the calibration problem is then said to be infeasible. However, in 
practice, the calibration constraints will be carefully set up, resulting into a consistent linear system 
�

X tT g = . So, from now on, ΩC  is assumed to be non-empty, or, equivalently, 
�

X tT g =  is assumed to 
be consistent. 
 
Although both the sets ΩC  and ΩB are (assumed to be) non-empty, the feasible region Ω ΩC B∩  can 
occasionally be empty. Then the optimisation problem (II.1) has no solution. 
 
So let us now assume that Ω ΩC B∩  is a non-empty feasible region, i.e. that the calibration problem is 
a feasible optimisation problem. Since d gT G� �  is strictly convex on the feasible region Ω ΩC B∩ , and 

since g 1= n  is always a solution of the reduced problem min ;d g gT
BG� �� �∈Ω , it easily follows that 

the convex programming problem (II.1) is bounded, which means that it has a finite optimal solution. 
Moreover, it follows immediately that this solution is unique. Notice that the calibration constraints do 
not necessarily have a unique solution. The solution of (II.1), if it exists, is the one that satisfies the 
calibration constraints and, in some sense, provides a minimal adjustment for the initial weight of each 
sample element. 
 
One practical problem remains to be discussed. We have assumed that ΩC  is non-empty. For the 
linear method this set is also the feasible region. Hence, if the calibration system is consistent, then a 
solution to (II.1) always exists if the linear method is used. For the multiplicative method, the 
assumption of non-empty feasible region implies that the calibration system not only must have a 
solution, but that at least one non-negative solution (g 0≥ ) exists. This is not necessarily true, 
although it is a desirable property of the g-weights. The existence of such a solution cannot be 
guaranteed; if it doesn’t exist, the feasible region is empty. The problem of whether the feasible region 
is empty is even more difficult for the truncated linear and the logit method. Then, although it may be 
assumed that the calibration system is consistent, one has to choose the bounds L and U such that the 
feasible region is non-empty. In the statistical literature on generalised calibration, one argues that L 
and U should be chosen arbitrarily. If a solution exists for the chosen values, one might consider a 
possible “improvement” of L and U. “Improvement” should be understood as an increase in L and/or a 
decrease in U, in order to restrict the g-weights or adjustment factors further. This process of 

tightening L U
n

,  is, according to the literature (Deville et al, 1993; Sautory, 1993), a trial and error 

procedure, and consequently can cost a lot of computer time, since for each choice of the bounds, the 
full calibration model (II.1) has to be solved, which is itself an iterative procedure. We here propose an 
alternative, more economic, approach. 
 
For illustrative purposes, consider an extremely small (and unrealistic) calibration problem: 
 

 

min ; ,

min ; , , .

min ; , ,

d g g gT T
BG

G g

G g

g

g
L g g U

G g G g g g L g g U

� �� �

� �
� �
� �

� �

� � � �� �

�

X t= ∈

=
�
��

�
	


�
��

�
	
 = ≤ ≤

�
��
��

�
��
��

= + + = ≤ ≤

Ω

2 4 1 4 7

2 4 4 7

1

2

1

2
1 2

1 2 1 2 1 2

 (II.2) 
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Thus we have n = 2 (2 sample elements) and m = 1 (1 calibration constraint). The distance function G 
need not be specified. If we choose L = 0.5 and U = 3, then a graphical representation of the single 
calibration constraint, the set  ΩB , and the feasible region for the problem (II.2) is as in figure 2.4. 
 
 

Fig. 2.4  Calibration constraints and feasible region for problem (II.2) 
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The calibration system is consistent, since there is only one calibration constraint; ΩC  is the straight 
line corresponding to this constraint. The big square bordered by a dashed line (labelled “Bounds” in 
the legend) is the set ΩB L U= =, . ,2 2

0 5 3 . For this choice of L and U the feasible region is non-
empty: it is the line segment on the straight line inside the square. By increasing L and decreasing U, 
many squares can be found such that the feasible region is non-empty. The small square in the graph is 
a minimal square, in the following sense: it is the smallest square that contains the so-called “target 

point” 1n
T= 1 1	 
  and a minimum number of points (here only 1) on the calibration constraint ΩC . 

The target point is introduced because of the assumption L U≤ ≤1 , whence the square ΩB L U= ,
2
 

must contain the target. The opposite corner point, on the calibration constraint ΩC , is in some sense a 

point on ΩC  that is closest to the target. Notice that this point need not be on the line g g1 2= , in 
general. The distance between the target and the opposite corner point is measured by the maximum-
norm (or L∞ -norm). For this norm, the points at the same fixed distance from a fixed point are on a 

square, with the fixed point in the middle. In other words, a L∞ -ball is a square. Once the “closest” 
point (or points) on the calibration constraint(s) is (or are) found, the largest L and the smallest U can 
easily be calculated as, respectively, the minimum of the co-ordinates of the target point and the 
closest point(s) on the calibration constraints, and the maximum of those co-ordinates. These values, 

L*  and U *  say, determine the minimal ball L U* *,
2

. 

 
We now generalise the technique introduced in the example. Using the maximum-norm, to find a point 
on the calibration constraints, as close as possible to the target point 1n , we solve the following 
mathematical programming problem: 
 

 min max ;
1

1
≤ ≤

− =
k n

k
Tg

�

X tg� � . (II.3) 

 

Suppose g0 01 0= g g n
T

,...,	 
  is a solution to (II.3), then we find L*  and U *  from: 
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L g g

U g g

n

n

*

*

min , ,...,

max , ,...,

=

=

1

1

01 0

01 0

� �
� �

. (II.4) 

 
Notice that if (II.3) has a solution, then the original problem (II.1) also has a solution. Hence problem 
(II.3) can be used to find out whether the feasible region of the original problem, for appropriate L and 
U in the truncated linear and the logit method, is empty or not. Therefore, it can be used to check 
whether the calibration constraints are consistent or not. 
 

L*  in (II.4) can be negative. To avoid negative L*  (and negative final g-weights), (II.3) can be 
modified into: 
 

 min max ; ,
1

1 0
≤ ≤

− = ≥
k n

k
Tg

�

X tg g� � , (II.5) 

 
but then existence of a solution to (II.3) does not guarantee existence of a solution to (II.5). 
 
Strictly speaking, L*  in (II.4) can also be equal to 1. Then, when using the logit method, one should 
set L just a little bit smaller than 1, since otherwise the logit distance G is not well-defined. A similar 
remark holds for U*  and U. 
 
It is interesting to mention that (II.3) (and similarly (II.5)) can be reformulated as a linear 
programming (LP) problem: 
 

 min ; , ,z g z g zT
k k

�

X tg = − ≤ − ≤1 1� � . (II.6) 

 
The simplex algorithm might be used to solve this LP problem, after a final transformation into a 
standardised form. Implementation of this algorithm is not really difficult, although pivoting is not a 
technique that has to be programmed daily. If one considers the implementation of this algorithm to 
solve the LP problem, then it should be investigated how data storage can be reduced. The revised 
simplex algorithm could be a solution (Cameron, 1985); Brickman (1988) gives a nice and 
illuminating discussion of the simplex algorithm, based on what is defined as condensed (simplex) 
tableaux (Brickman, 1988, p.9). 
 
We have used the target point 1n  in the above discussion. This does not restrict the applicability of our 
ideas, or of our software. Justification of this special target point is related to the scale parameter, 
introduced in section II.A. So any point in the n-dimensional Euclidian space could serve as target 
point. 
 
We feel it would be very useful to solve (II.3) (or (II.6)) or (II.5) immediately after defining the 
calibration constraints. It would be great if that were possible in almost real-time. One would then 
have a clear indication of possible values for the lower bound L and the upper bound U, if these were 
to be set, which is the case if the logit or truncated linear method is finally chosen. Moreover, solving 
this problem gives a lot of information on the central problem (II.1) itself. We strongly believe that 
this information will help to set up the final calibration problem, from which the final g-weights will 
be obtained, and to make the statistician more confident about the solution of the calibration problem. 
 
We have not yet programmed an algorithm to solve (II.3) or (II.5). However, for small problems one 
can use Microsoft Excel, which has a very powerful optimisation tool, called the Solver. We have used 
this to obtain the results for the above example. Figure 2.4 also has been created with Microsoft Excel. 
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II.D NUMERICAL SOLUTION TO THE CALIBRATION PROBLEM: THE BASIC ALGORITHM 

 
Recall that the constraints g ∈Ω B in (II.1) are rather implicit for methods (1), (2) and (4). To develop 
the basic algorithm for solving the calibration problem we will therefore ignore these constraints in the 
present section. So we consider now the simplified calibration problem 
 

 min , ;D Td w X w t� �� �=      or      min ;d g gT TG� �
 �
�

X t= , (II.7) 

 
which is a convex mathematical programming problem, with strictly convex objective function and 
linear equality constraints. A solution is assumed to exist (see section II.C). 
 
The method of solving (II.7) is straightforward and well known, using the technique of the Lagrange 

multipliers. Let λλλλ ==== λ λ1,..., m
T	 
  be the vector of Lagrange multipliers. Defining the Lagrangian 

function L w,λλλλ� � =  d G
w

dk
k

kk

n
T T�

��
�
	


+ −
=

∑
1

λλλλ X w t� � , it can be shown that the (n+m) × (n+m) system 

∂
∂

= ∂
∂

=L L

w
0 0,

λλλλ
 transforms into the following m × m system in λλλλ :  

 

 ΦΦΦΦ λλλλ λλλλ λλλλ� � � � � �= − = − =
=

∑d Fk k
T

k

n

k
Tx x t X w t 0

1

, (II.8) 

 
where w λλλλ� � is the n-vector of calibrated weights, with k-th component defined as: 
 
 w w d F d g d gk k k k

T
k k k k= = = =λλλλ λλλλ λλλλ� � � � � �x . (II.9) 

 

In matrix notation: w D Xλλλλ λλλλ� � � �= F . The Lagrange multipliers λλλλ ==== λ λ1,..., m
T	 
  can be obtained by 

solving iteratively the non-linear system ΦΦΦΦ λλλλ� � = 0  of m transformed calibration constraints. The 
formula (II.9) allows calculating the final calibrated weights, once the Lagrange multipliers are found. 

Notice that g F w dk k
T

k k= =x λλλλ� � , or g Xλλλλ λλλλ� � � �= F . To solve iteratively the system of non-linear 

equations (II.8), the Newton-Raphson method is used. This is based on a first order Taylor series 
expansion of the left hand sides ΦΦΦΦ λλλλ� � , resulting into the following set of updating equations: 

 

 λλλλ λλλλ ΦΦΦΦ λλλλ ΦΦΦΦ λλλλ( ) ( ) ( ) ( )'l l l l= −− − − −1 1 1� �� � � � , (II.10) 

 
which allows calculating successive updates λλλλ ( )l  (l =1, 2, …) for the Lagrange multipliers λλλλ , starting 

from initial values λλλλ ( )0 . It is convenient to start from λλλλ ( )0 = 0 , as it will be seen later. At each iteration 
l = 1,2,…, w D Xλλλλ λλλλ( ) ( )l lF− −=1 1� � � � is first evaluated, from which then the m-vector 

ΦΦΦΦ λλλλ λλλλ( ) ( )l T l− −= −1 1� � � �X w t  and the matrix ΦΦΦΦ λλλλ λλλλ' ( ) ( )l T l− −=1 1� � � �X W X , where 

W wλλλλ λλλλ( ) ( )l ldiag− −=1 1� � � � !  (see Proposition II.4 in section II.E.4), are calculated. Evaluation of 

equation (II.10) involves computation of a g-inverse ΦΦΦΦ λλλλ' ( )l− −
1� �� �  of the m × m matrix ΦΦΦΦ λλλλ' ( )l−1� � . 

The usage of g-inverses turns out to be a very efficient mathematical device in practice. We comment 
on this in the next paragraphs. 
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The following general algorithm is implemented in our SPSS module g-CALIB-S: 
 
BASIC ALGORITHM 
 
Step i Initialise the Lagrange multipliers: λλλλ ( )0 = 0 . The initial value of the calibrated weights 

is w D X D1 d( ) ( )0 0= = =F nλλλλ� � . 

Step ii Calculate the first update of the Lagrange multipliers from formula (II.10): 

λλλλ ( )1 = − −
−

X DX X d tT T� � � � , and calculate the first updated value of the calibrated 

weight vector w D X( ) ( )1 1= F λλλλ� � . Let l = 1. 

Step iii If convergence is attained, then go to Step vi, otherwise continue with Step iv. 

Step iv Let W = w( ) ( )l ldiag� � . Calculate ΦΦΦΦ( ) ( )l T l= −X w t  and ΦΦΦΦ '( ) ( )l T l= X W X . 

Step v Set l to l + 1. Calculate λλλλ λλλλ ΦΦΦΦ ΦΦΦΦ( ) ( ) ( ) ( )'l l l l= −− − − −1 1 1� � , or 

λλλλ λλλλ( ) ( ) ( ) ( )l l T l T l= − −− − − −1 1 1X W X X w t� � � � . The new update for the calibrated weights 

is w D X( ) ( )l lF= λλλλ� � . Return to Step iii. 

Step vi The final solution is w w D X Dg* ( ) ( ) ( )= = =l l lF λλλλ λλλλ� � � � . 

 
Converge is attained if absolute change in successive updates of the g-weights is smaller than a pre-
specified tolerance level ε > 0, i.e. if max ( ) ( )

1

1

≤ ≤

−− ≤
k n

k
l

k
lg g ε . This maximum-norm criterion is 

implemented in g-CALIB-S. Alternative convergence criteria could be implemented; e.g. 

max
( ) ( )

( )1

1

1≤ ≤

−

−
−

≤
k n

k
l

k
l

k
l

w w

w
ε , or W W W 1( ) ( ) ( )l l l

n− ≤− − −1 1� �� � ε , where .  is the Euclidean norm. We have 

not compared the performance of the algorithm for different convergence criteria. The maximum-
norm criterion (for the g-weights) is also implemented in Calmar (Sautory, 1993). 
 
Before we proceed with the inclusion of the additional constraints g ∈Ω B, resulting into an extended 
algorithm, we notice that two matrices involved in the calculation are generally not uniquely 
determined. First, there is the design matrix X. The reader will know from linear regression that a 
design matrix for a given regression problem can take different forms; we here have a similar problem. 
Second, as we discuss in section II.E, a g-inverse of a given matrix is generally not unique. The next 
section II.E is completely devoted to a very technical in-depth treatment of these identification 
problems. More specifically, we will demonstrate that the algorithm is invariant for both the choice of 
the design matrix, and for the way of computing g-inverses.
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II.E MATHEMATICAL JUSTIFICATION 

 
II.E.1 Preliminaries, and results from linear regression theory 

 
The theory of generalised calibration is in many respects similar to the theory of linear regression, 
which in turn uses a lot of results from matrix theory and the theory of linear transformations. In the 
next paragraphs we will justify the algorithm to solve the generalised calibration problem. As it will be 
seen, knowledge of matrix-based theory of linear regression will be very helpful. So we repeat here 
below basic concepts from matrix theory and linear regression. We consider real matrices only. 
 
Linear regression theory is also useful in advanced theoretical research on the properties (weaknesses 
and strengths) of calibration estimators. See for instance Chambers and Skinner (1999) , where it is 
argued that “the choice of calibration constraints is synonymous with an implicit linear model 
specification for the regression of the survey variable on the auxiliary variables defining these 
constraints”. Deville (2000) chooses for a treatment based on generalised linear modelling to justify 
calibration as a technique to correct for non-response. Generalised linear modelling (Francis et al, 
1993; Lindsey, 1997) has a lot in common with traditional linear regression modelling. 
 
 
NOTATION AND BASIC MATRIX RESULTS 
 

For any n × m matrix A, M(A) denotes the subspace of ℜ n  generated by the columns of A; it is called 
the range space or column space of A. The dimension of this subspace is the rank r(A) of A; this is at 
most m if n ≥ m. 
 
A generalised inverse or g-inverse of a matrix A is any matrix B that satisfies ABA A= ; a g-inverse 
of a matrix A is usually denoted as A− . A reflexive g-inverse of A is a g-inverse that also satisfies 
A AA A− − −= . The Moore-Penrose inverse of A is the reflexive g-inverse, denoted A+ , for which 
both AA+  and A A+  are symmetric. The Moore-Penrose inverse always exists and is unique. Other g-
inverses are not necessarily unique. The Moore-Penrose inverse, as well as any other g-inverse, is the 
ordinary inverse, denoted A−1 , if A is square (n = m) and has full rank: r(A) = n = m. The Moore-
Penrose inverse can often be obtained directly (through a simple matrix function) in software packages 
(SPSS, 1999b; SAS, 1990). 
 
An important general result for g-inverses is the following (Rao, 1972; (vi)(c) in 1b.5): 
 
Invariance property of g-inverses 
For non-null matrices B and C, BA−C  is invariant for any choice of the g-inverse A−  iff 

M MT TB A� � � �⊂  and M MC A� � � �⊂ . 

 
 
In the discussion here below we recall a lot of results from linear regression theory. Following Rao 
(1972), we use the short notation y X I, ,ββββ σ2� � for the fundamental linear regression problem in which y 

has the expectation E y X� � = ββββ  and dispersion matrix D y I� � = σ2  (σ > 0). Similarly, the generalised 

linear regression problem is denoted as y X, ,ββββ ΣΣΣΣ� � , where ΣΣΣΣ is a positive definite (pd) dispersion 

matrix. The dispersion matrix thus has an ordinary inverse ΣΣΣΣ−1 ; the latter then has a unique pd square 

root ΣΣΣΣ− 1
2 , which is the unique matrix that satisfies ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ− − −=

1
2

1
2 1 . Of course ΣΣΣΣ itself has a unique pd 

square root ΣΣΣΣ
1
2 . Notice that ΣΣΣΣ ΣΣΣΣ− −

=
1
2

1
2

1

 ! . 



  

 –  23  – 
   

 

 
 
ORDINARY LEAST SQUARES (OLS) ESTIMATION 
 
Consider the linear regression problem y X I, ,ββββ σ2� �. The following results are well known; for more 

details we refer to Rao (1972; 1b.5-6, 1c.4, 4a.6, 4i.4). 
 

(i) The system of linear equations X yββββ =  is not necessarily consistent. So an exact solution is not 
being searched for, but instead we are interested in the OLS solution, which is the solution ββββ 

that minimises the quadratic form X y X yββββ ββββ− −	 
 	 
T
. 

(ii) The system of normal equations X X X yT Tββββ =  is always consistent. The rank of X XT  

satisfies r rT TX X X� � � �= ; also M MT T mX X X� � � �= ⊂ ℜ . 

(iii) A solution to the set of normal equations is �ββββ ==== X X X yT T� �− , which is an OLS solution to the 

regression problem. This solution is unique only if the design matrix X has full rank 

r mX� � = ; then the only g-inverse X XT� �
−

 is the ordinary inverse X XT� �
−1

. 

(iv) The dispersion of the estimator �ββββ  is σ2 X XT� �
−

. This shows that the g-inverse X XT� �
−

 has 

statistical significance. 

(v) The matrix X X X X PT T� �
−

=  is invariant for any choice of the g-inverse X XT� �
−

. Hence the 

OLS estimator �

�y = X Pyββββ ====  for y is unique. 

(vi) The matrix P is idempotent ( P P2 = ) and symmetric ( P PT = ), so P is an orthogonal 
projection matrix. The estimator �y = Py  is the projection of y on the subspace 

M M nX P� � � �= ⊂ ℜ  along the orthogonal subspace M nI P− ⊂ ℜ� � . The latter space 

contains the residual vector y y = I P y− −� � � . This establishes a geometric interpretation of the 

regression problem. 
 
 
GENERALISED LEAST SQUARES (GLS) ESTIMATION 
 
Now, consider the generalised linear regression problem y X, ,ββββ ΣΣΣΣ� � . The dispersion matrix ΣΣΣΣ is 

symmetric, but not necessarily diagonal, which means that the observations y yn1,...,  can be 

correlated. For notational convenience we will assume that ΣΣΣΣ is pd (non-singular). This problem can be 
transformed into the fundamental linear regression problem y X' , ' ,ββββ I� �  (the fundamental regression 

problem with σ2 =1) by the linear transformation with matrix ΣΣΣΣ− 1
2 , i.e. y y'= −ΣΣΣΣ

1
2  and X X'= −ΣΣΣΣ

1
2 . The 

previous results (i-vi) are generalised as follows: 
 

(vii) The system of linear equations X yββββ =  is not necessarily consistent. So an exact solution is 
again not being searched for, but instead we are interested in the GLS solution, which is the 

solution ββββ that minimises the quadratic form X y X yββββ ΣΣΣΣ ββββ− −−	 
 	 
T 1 . 

(viii) The system of normal equations X X X yT TΣΣΣΣ ββββ ΣΣΣΣ− −=1 1  is always consistent. The rank of 

X XT ΣΣΣΣ−1  satisfies r rT TX X XΣΣΣΣ− =1� � � � ; also M MT T mX X XΣΣΣΣ ΣΣΣΣ− −= ⊂ ℜ1 1
2� �  ! . 
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(ix) A solution to the set of normal equations is � ' ' ' 'ββββ ==== ΣΣΣΣ ΣΣΣΣ ====GLS
T T T TX X X y X X X y− − − −1 1� � � � , 

which is a GLS solution to the regression problem y X, ,ββββ ΣΣΣΣ� � . As in (iii) this solution is unique 

only if the design matrix X has full rank r mX� � = . 

(x) The dispersion of the estimator �ββββGLS  is X XT ΣΣΣΣ− −1� � . 

(xi) The matrix X X X X X X X X P' ' ' ' 'T T T T� � � �
− − − − −= =ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ

1
2

1
21  is invariant for any choice of the 

g-inverse X XT ΣΣΣΣ− −1� � . Obviously then ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ
1
2

1
2 1 1P P' *− − − −= =X X X XT T� �  is invariant too. 

Hence the GLS estimator �

�
*y = X P yGLS GLSββββ ====  for y is unique. 

(xii) The matrix P'  is idempotent and symmetric, so P'  is an orthogonal projection onto the 

subspace M M M nX X P' '� �  ! � �= = ⊂ ℜ−ΣΣΣΣ
1
2 . The matrix P*  is idempotent (but generally not 

symmetric), so P*  is a projection onto the subspace M X� � . The estimator �

*y = P yGLS  is the 

projection of y on the subspace M M nX P� � � �= ⊂ ℜ*  along the subspace M nI P− ⊂ ℜ*� � . 

The latter space contains the residual vector y y = I P y− −�

*
GLS � � . The subspaces M P*� �  and 

M I P− *� �  are generally not orthogonal, since P*  is generally not symmetric! 

(xiii) For any y, we have P* ' ' 'y P y P y= =−ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ
1
2

1
2

1
2 . This means that the orthogonal projection of y 

by P*  onto M X� �  can be obtained by successive application of the projection by P'  of the 

linear transformation y'  onto M ΣΣΣΣ− 1
2 X !  and the linear (back) transformation by ΣΣΣΣ

1
2  of the 

latter projection P y' ' . 
 
 
 
II.E.2 Equivalent design matrices 

 
A design matrix (in a linear regression problem as well as in a calibration problem) is not unique. 
However, the result of the regression of y on a given set of explanatory variables should not depend on 
the choice of the design matrix derived from those explanatory variables. This suggests the following 
definition. 
 
Definition 1 
Matrices X and Z are equivalent design matrices if and only if M MX Z� � � �= . The symbol “ ≈ ” 

denotes equivalence of design matrices. Hence X Z≈  iff M MX Z� � � �= . 

 
 
In linear regression, the choice of the design matrix will have an effect on the interpretation of the 
regression coefficients ββββ. 
 
Here is an example of three equivalent design matrices: 
 

1 1 0 2

1 1 0 7

1 0 1 4

1 0 1 5

1 1 2

1 1 7

1 0 4

1 0 5

1 0 1

1 0 35

0 1 2

0 1 2 5

�

�










�

�

�
�
�
�

≈

�

�










�

�

�
�
�
�

≈

�

�










�

�

�
�
�
�

.

.
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Equivalent design matrices (for a given linear regression problem) may have different numbers of 
columns, but always have the same number of rows (which is the number of cases or observations in 
statistical problems). However, if X Z≈ , then r rX Z� � � �= , which is the dimension of the range space 

M MX Z� � � �= . Now, we will write X X X X PT T� �
−

= X  (instead of P) for the projection on M X� � , 

given X. Similarly we write PZ ; P PX X
'

'=  (instead of P' ; see (xi) in the previous section) and 

P PZ Z
'

'= ; PX
*  (instead of P* ; see (xi) in the previous section) and PZ

* . The following result then 

follows easily from the results (v) and (xi) on projection matrices in section II.E.1. 
 
Proposition II.1 

If X Z≈  then P PX Z= = =
− −

X X X X Z Z Z ZT T T T� � � � , for any choice of the g-inverses involved. 

 
 

Now let ΣΣΣΣ be as in section II.E.1, and write ΣΣΣΣ− 1
2 M X	 
  for the image of the subspace M X� �  under the 

linear transformation ΣΣΣΣ− 1
2 . Obviously ΣΣΣΣ ΣΣΣΣ− −=

1
2

1
2M MX X� �  ! . Then it follows immediately from 

M MX Z� � � �=  that M MΣΣΣΣ ΣΣΣΣ− −=
1
2

1
2X Z !  ! . This leads to the following result. 

 
Proposition II.2 
If X Z≈  and ΣΣΣΣ is any square symmetric pd matrix, then P PX Z

' '=  and P PX Z
* *= , for any choice of the 

g-inverses involved in the computation of the projection matrices. 
 
 
Propositions II.1 and II.2 are formulated in a most general way, i.e. they are not only valid in a 
regression context. We have recalled in the previous section more results from linear regression theory 
than we need here or in the remainder of this text. Such results should of course be of interest to any 
statistician, for whom this text has been written primarily. The reader with a statistical background 
should therefore feel more confident with the results presented here after going through the 
introductory section II.E.1. 
 
The following result is important in our justification (see sections II.E.3 to II.E.5) of the algorithm to 
solve the generalised calibration problem. The result follows easily from proposition II.2. 
 
Proposition II.3 
Now we make a special choice for the matrix ΣΣΣΣ, i.e. ΣΣΣΣ = −W 1 , where W is any pd square diagonal 
weight matrix. Then for any pair of equivalent design matrices X and Z, the following equality holds: 
 

 X X X P P Z Z ZT T T TWX W WZ WX Z� � � �
− −

= = =* * , (II.11) 

 
for any choice of the g-inverses. 
 
 
Proposition II.3 states a two-folded invariance property: invariance for the choice of the matrix X (the 
design matrix in the context of linear regression or calibration), and invariance for the way g-inverses 
are calculated. In the next sections II.E.3-5, we use this result to show that the algorithm to solve the 
generalised calibration problem has these invariance properties to, in each step of the iterative 
procedure. In section II.E.3, we treat the linear method, because it takes a special place in the general 
class of calibration methods: no iteration is required. Next, in section II.E.4 we return to calibration 
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problems of the simplified form (II.7) and the related Basic Algorithm. In section II.E.5, finally, we 
generalise the Basic Algorithm to the so-called Extended Algorithm, which is appropriate for solving 
the general calibration problem (II.1), and we discuss the invariance properties for the Extended 
Algorithm. 
 
 
II.E.3 The linear case 

 

The problem is to solve min ;d g gT TG� �
 �
�
X t= , with quadratic distance function G. Then 

G x x' ( ) = −1, the inverse of which is G u F u u' ( ) ( )− = = +1 1 . Substitution of F k
T

k
Tx xλλλλ λλλλ� � = +1  into 

(II.8) makes that system linear in λλλλ : dk k
T

k

n

k
T T1

1

+ − = + − =
=

∑ x x t X d X DX t 0λλλλ λλλλ� � � � , where 

D d= diag� �.  Equivalently: 
 

 − X DX X d tT T� �λλλλ ==== −−−− . (II.12) 

 
That this system is consistent actually follows from the assumed consistency of the original calibration 
system X w tT = . We then know from linear algebra (Rao, 1972) that 
 

 λλλλ * = − −
−

X DX X d tT T� � � � (II.13) 

 

is a solution, for any g-inverse X DXT� �−. No iteration is necessary. Interestingly, the solution (II.13) is 

exactly the first update λλλλ ( )1  that would be obtained from application of (II.10), with λλλλ ( )0 = 0 , 

ΦΦΦΦ λλλλ ( )0� � = −X d tT  and ΦΦΦΦ λλλλ' ( )0� � = X DXT . Thus, for the linear method the iterative procedure already 

converges after one step, which is a well-known property in generalised calibration methodology. 
 
The solution λλλλ * is generally not unique, e.g. when X  has not full rank, since X DXT  is then singular 
and has infinitely many g-inverses. However, it follows directly from the general invariance property 

in section II.E.1, with A = X DXT , B X=  and C = −X d tT , that X X X DX X d tλλλλ * = − −
−T T� � � �  is 

invariant for the choice of the g-inverse. The k-th component of the m-vector Xλλλλ *  is xk
T λλλλ * , hence the 

calibrated weights w dk k k
T= +1 x λλλλ *� �  are invariant for the choice of the g-inverse. In matrix notation: 

w D 1 X* *= +n λλλλ� � . If X  does have full rank m, the g-inverse becomes the ordinary inverse X DXT� �−1
 

(provided all initial weights are strictly positive, as assumed). In that case, the solution λλλλ * is unique 
too. 
 
Moreover it follows from proposition II.3 that the calibrated weights w D 1 X* *= +n λλλλ� �  are 

independent for the choice of the design matrix, for given calibration problem min ;d g gT TG� �
 �
�

X t= . 

Notice that the g-weights in matrix notation are written as g 1 X* *= +n λλλλ . 
 
The reader must be aware of the fact that under the linear method the solution λλλλ *, and hence w*  and 
g*  can have zero and/or negative components. This is a major drawback of the linear method, while, 
on the other hand, the method is very simple to implement, since no iteration is needed to compute the 
solution. Moreover, the resulting calibrated estimators of totals of survey variables are the well-known 
and interesting GREG estimators. 
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II.E.4 The simplified calibration problem 

 
We now consider the general simplified calibration problem(II.7), as discussed in section II.D. Notice 
that the linear calibration problem is a special case. In section II.D we have introduced the Basic 
Algorithm to solve the simplified calibration problem. We now discuss some interesting properties of 
this algorithm. 
 
Propositions II.4 and II.5 follow by straightforward algebra.  
 
 
Proposition II.4 
The m × m matrix ΦΦΦΦ λλλλ'� �  can be written as ΦΦΦΦ λλλλ λλλλ λλλλ'� � � � � �= =X W X X XT TDG , where 

W wλλλλ λλλλ� � � �� �= diag  and G gλλλλ λλλλ	 
 	 
� �= diag . It follows that ΦΦΦΦ λλλλ'� �  is a symmetric matrix. 

 
 
Proposition II.5 
The initialisation λλλλ ( )0 = 0  implies:  

(i) g Fk k
Tλλλλ λλλλ( ) ( )0 0 1� � � �= =x , or g X 1λλλλ λλλλ( ) ( )0 0� � � �= =F m ; 

(ii) w dλλλλ ( )0� � = , or W Dλλλλ ( )0� � = ; 

(iii) ΦΦΦΦ λλλλ ( )0� � = − = −X d t t tT
π ; 

(iv) ΦΦΦΦ λλλλ' ( )0� � = X DXT , where D d= diag� �. 

 
 

The notation t X dπ = T  usually denotes the so-called π-estimator or Horvitz-Thompson estimator for 

the calibration totals t . This assumes that d  is the vector of sampling weights, i.e. dk k= −π 1 . 

However, d  may be any vector of initial weights, so tπ  can be any vector of initial estimates of the 
calibration totals t . It is always assumed that the initial weights are all positive, i.e. probability 
sampling is assumed throughout the text. In other words, we assume that D is pd. 
 
 
Proposition II.6 
If w 0λλλλ� � > , i.e. W λλλλ� � is pd, then ΦΦΦΦ λλλλ'� �  is positive semi-definite (psd) with rank 

r r mΦΦΦΦ λλλλ'	 
� � 	 
= ≤X . If both w 0λλλλ� � >  and X  has full rank, i.e. r mX� � = , then ΦΦΦΦ λλλλ'� �  is pd. 

 
 
If the rank of X  is maximal, then no auxiliary information is redundant. The advantage of working 

with such a calibration design matrix is that ΦΦΦΦ λλλλ'� �  then has an ordinary inverse ΦΦΦΦ λλλλ'� �� �−1
. However, 

although it is always possible, it is usually more difficult to construct a full rank design matrix. 
Therefore we focus on the situation were r mX� � < . On the other hand, W λλλλ� � is always assumed to be 

pd, which means that none of its diagonal elements is zero or negative. 
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Theorem II.1 
 
Suppose D and W λλλλ� � are pd, and let λλλλ ( )0 = 0 . Then, for given simplified calibration problem(II.7), the 
following expressions do not depend on the choice of the g-inverse involved or on the calibration 
design matrix X: 
 

(i) X X X X X XT T
n

T TDX D1 DX d� � � �
− −

=  

= =
− −

X X W X X X X W X X wT T
n

T Tλλλλ λλλλ λλλλ λλλλ( ) ( ) ( ) ( )0 0 0 0� �� � � � � �� � � �W 1 ; 

(ii) X X W X X X X W X X wT T
n

T Tλλλλ λλλλ λλλλ λλλλ� �� � � � � �� � � �
− −

=W 1 ; 

 
and, if the calibration constraints are consistent, this also holds for 
 

(iii) X X W X tT λλλλ� �� �−  and X X t X X W X tT TDX� � � � !
− −

= λλλλ ( )0 . 

 
From proposition II.3 it immediately follows that invariance holds for the expressions (i) and (ii). To 
prove (iii), we assume that w*  is a solution, and rewrite the expression as  
 

X X W X t X X W X X

X X W X X W

T T T

T T

λλλλ λλλλ

λλλλ λλλλ

� �� � � �� �

� �� � � �

− −

−

=

=

w

w

*

~
 

 

where ~w  is the vector such that w w* ~= W λλλλ� � . The premise then follows with (ii). ���� 
 
 
Theorem II.2 
 
If W λλλλ� � is pd, if the calibration constraints are consistent, and if λλλλ ( )0 = 0 , then at each step in the 
iteration the updated estimates of calibrated and g-weights are invariant for both the choice of the g-
inverse used in the updating formula, and for the choice of the calibration design matrix X, for fixed 
simplified calibration problem. 
If moreover the iterative procedure based on (II.10)  converges to λλλλ *, then the solution w wλλλλ * *� � =  is 

invariant as well. 
 
We can write, from equation (II.8) and the updating equations (II.10), and from proposition II.4:  
 

X X X

X X X W X X w X X W X t

λλλλ λλλλ ΦΦΦΦ λλλλ ΦΦΦΦ λλλλ

λλλλ λλλλ λλλλ λλλλ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

'

.

l l l l

l T l T l T l

+ −

− −

= −

= − +

1 � � ! � �

� � ! � � � � !
 

 

Notice that Xλλλλ ( )0 = 0 . The terms in the right hand side are invariant for l = 0, because of theorem II.1 

(i) and (iii). So Xλλλλ ( )1  is invariant. Assuming then that Xλλλλ ( )l  is invariant, theorem II.1 (ii) and (iii) 

imply that the right hand side in the expression for Xλλλλ ( )l+1  is invariant, and so is Xλλλλ ( )l+1 . Finally, 
g 1 X( ) ( )l

n
l+ += +1 1λλλλ  and w D 1 X( ) ( )l

n
l+ += +1 1λλλλ� �  are invariant too. ���� 
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The linear method is covered by theorem II.2: it suffices to stop at l = 1, and therefore only 

W Dλλλλ ( )0� � =  need to be pd, which indeed follows from the assumption of positive initial weights. 

 
It follows from theorem II.2 that we have the computationally interesting result that properties of the 
iterative procedure (convergence rate, the solution, …) do not depend on the way a g-inverse is 
calculated or on the calibration design matrix chosen to represent the simplified calibration problem. 
One can use therefore the Moore-Penrose inverse, which is available in the matrix language of SPSS® 
9.0. Most packages that include matrix manipulation allow calculating g-inverses. SAS/IML® is 
another example. From a practical point of view it is interesting to be able to work with a design 
matrix with linear dependencies between the columns. It simplifies either the preparation of these 
matrices (if the software does not construct it automatically), or the implementation of its construction 
from originally observed variables. The fact that the calibration design matrix may have many 
equivalent representations is exploited utmost in our implementation of the generalised calibration 
methodology. More about this in the next chapters. 
 
 
 
II.E.5 The general calibration problem: the Extended Algorithm 

 

We now deal with the solution of the general calibration problem min , ; ,D T
Bd w X w t g� �� �= ∈Ω , or 

min ; ,d g g gT T
BG� �� �

�

X t= ∈Ω , of which existence and uniqueness of a solution was already 

discussed in section II.C. We present here below the Extended Algorithm that is implemented in our 
software g-CALIB-S, and discuss invariance problems related to the use of g-inverses and the choice 
of the design matrix X. The algorithm is an adaptation of the Basic Algorithm in section II.D. 
“Truncation” of calibrated weights means that, if some updated values wk  are not between d Lk  and 
d Uk , where L and U follow from the specification of ΩB, then, if w d Lk k<  we set wk  equal to d Lk , 
and if w d Uk k>  we set wk  equal to d Uk . We assume here that L > 0. 
 
EXTENDED ALGORITHM 
 
Step i As in the Basic Algorithm. 
Step ii As in the Basic Algorithm. 

Step iii If necessary, truncate the update w ( )l . The result is denoted as ~ ( )w l . Then ~ ( )w l
B∈Ω . If 

convergence is attained, then go to Step vi, otherwise continue with Step iv. 

Step iv Let 
~ ~( ) ( )W = wl ldiag� � . Calculate ΦΦΦΦ( ) ( )~l T l= −X w t  and ΦΦΦΦ '

~( ) ( )l T l= X W X . 

Step v As in the Basic Algorithm. 

Step vi The final solution is w w* ( )~= l . 
 
 
Converge is now attained if absolute change in successive truncated updates of the g-weights is 

smaller than a pre-specified tolerance level ε > 0, i.e. if max ~ ~( ) ( )

1

1

≤ ≤

−− ≤
k n

k
l

k
lg g ε , where ~

~
( )

( )

g
w

dk
l k

l

k

=  (k = 

1, …, n). 
 
 

We already know that, for l = 1, w w( ) ( )l = 1  in Step ii satisfies the invariance properties. With 

truncation as in Step iii, 
~ ~( ) ( )W = wl ldiag� �  is pd (since L > 0). Therefore, the update w ( )l  in Step v 
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will satisfy the invariance properties, by theorem II.1. This completely proves invariance in the 
Extended Algorithm too. 
 
Notice that, for the linear truncated method (4), the update w ( )l  in Step v can be written as 
 

w D 1 X

D 1 X X

w DX

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

~ ~

~ ~

~ ~ .

l
n

l T l T l

n
l T l T l

l T l T l

= + − −�
�

�
	

�
�

�
	

= + − −�
�

�
	

= − −

− − − −

− − − −

− − − −

λλλλ

λλλλ

1 1 1

1 1 1

1 1 1

X W X X w t

X W X X w t

X W X X w t

� � � �

� � � �

� � � �

 

 
Hence calculation of w ( )l  involves both the non-truncated w ( )l−1  and the truncated ~ ( )w l−1 , or 

~ ( )W l−1 . 
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III.A REFINEMENTS OF THE GENERALISED CALIBRATION MODEL 

 
III.A.1 Model formulae – Calibration strata 

 
Wilkinson and Rogers (1973) have introduced a very convenient symbolic notation for describing the 
linear structure in regression models. Their model language and algebra is, for instance, extensively 
used in the software package GLIM, for fitting generalised linear models (GLMs) (Francis et al, 
1993). See also Lindsey (1997) for systematic use of this language in applications. It was already 
stated that calibration models have a lot in common with linear regression models, which are a special 
class of GLMs, so that it turns out that the same symbolic language can be used to specify 
unambiguously the linear structure, i.e. the structure of the design matrix, of the calibration model. 
Such a specification in the language of Wilkinson and Rogers (1973) will be called a model formula. 
Notice that the structure of the design matrix is describing the structure of the calibration equations. 
 
It must be noticed, however, that such a model formula does not specify how ultimately the design 
matrix is (to be) constructed. Rather, a class of equivalent design matrices (section II.E.2), or a class of 
equivalent systems of calibration equations, is defined by any model formula. 
 
Consider qualitative calibration variables A, B, … and a quantitative calibration variable Z. The 
symbol « 1 » is used to denote the constant calibration variable (with value 1, or any other constant 
value). Suppose that calibration is on the marginal distribution of both A and B (in the population), 
then the linear structure of the calibration model can be described by the model formula A + B. It can 
easily be seen that the constant variable 1 may be included in the design matrix of such a calibration 
model. Hence A + B is equivalent to 1 + A + B. We prefer to include a column with constant value 1 in 
the design matrix, whenever it is possible, and so we also prefer to include the constant term 1 in the 
model formula, although this is not strictly necessary. 
 
If we wish to calibrate on the joint distribution of A and B (in the population), then the appropriate 
model formula is A*B, or 1 + A*B. An equivalent model formula is 1 + A + B + A.B. This formula 
indicates that calibration is on the total population (size), on the population (size) in the categories of A 
(i.e. calibration on the marginal distribution of A), on the population (size) in the categories of B (i.e. 
calibration on the marginal distribution of B), and on the population (size) in the cells of a cross-
classification of A with B (i.e. on the joint distribution of A and B). It is because of the fact that if 
calibration is on the joint distribution of A and B, then calibration is implicitly also on the marginal 
distribution of both A and B, and, moreover, also on the total population size, that the model formulae 
1 + A + B + A.B, 1 + A*B, and A*B are equivalent. The notation A.B was used so far to symbolise the 
joint – and only the joint! – distribution of A and B, but, because of the above clarification, A.B and 
A*B can, from now on, be used interchangeably. This means that we can say that our calibration 
models are hierarchical: if higher order interaction terms are included, then all corresponding lower 
order interaction terms are included too. 
 
Each model term, be it explicit or not, in a model formula, implies an effect on the g-weights 
g X= F λλλλ� �  in the calibration model. Following linear regression (or GLM) terminology, we may say 

that the model 1 + A*B = 1 + A + B + A.B implies an overall effect (corresponding to the constant 
term), main effects for each of the variables A and B (corresponding to the model terms A and B), and 
an interaction effect of A and B (corresponding to the model term A.B) on the g-weights. 
 
Having explained the basics of the symbolic model language, it will now be straightforward to 
interpret the following model formula (and model calculus!), wherein C is a third qualitative 
calibration variable: 
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� 1 + A*B*C = 1 + A + B + C + A.B + A.C + B.C + A.B.C 
� 1 + A + B*C = 1 + A + B + C + B.C 
� 1 + (A + B)*C = 1 + A*C + B*C = 1 + A + B + C + A.C + B.C = (1 + A + B)*C 

 
The very last expression, (1 + A + B)*C, is extremely useful in the sequel. It implies that the additive 
model 1 + A + B is to be applied in each category of the third variable C. We wil say that the variable 
C is out-factorised. If a model formula can be rewritten, such that one or more qualitative variables are 
out-factorised, then calibration can be performed separately with a simpler model in each category or 
cell determined by the out-factorised variables: simultaneous calibration of the entire sample is then 
equivalent, i.e. results into the same set of g-weigths, to separate calibration with the simpler model in 
the C-categories. The latter categories or cells are called calibration strata. Thus, in our example, (1 + 
A + B)*C, the simple model 1 + A + B is applied separately to the sub-samples, or calibration strata, 
corresponding to the categories of C. Calibration strata will play an important role in our calibration 
software; see section IV.B for details. 
 
Quantitative variables may be involved too in the calibration model, and the above model language 
can be easily extended to incorporate such variables too. One peculiarity related to the constant term, 
however, should be taken care off, as we will soon explain. 
 
We start with the simple model Z, where Z is a quantitative calibration variable. This simple model is 
meant to imply that calibration is on the total tz  of a numerical variable, z say, in the population. The 
formula for the model wherein calibration is not only on the total of z in the entire population, but also 
on the marginal totals of z in sub-populations corresponding to the categories of a quantitative 
calibration variable A, is Z*A, or Z + Z.A. Notice again the hierarchical structure of our calibration 
models; however, Z*A does not imply a main effect of A, or an additional term A in the model 
formula. If only the totals of z within A-categories, and henceforth also the total of z in the population, 
are used as calibration benchmarks, then it would not be correct to include the constant term 1 in the 
model formula. Hence: Z*A ≠ 1 + Z*A. The model formula 1 + Z*A, however, does make sense: it 
implies that, again, the totals of z within A-categories, and henceforth also the total of z in the 
population, are used as calibration benchmarks, but that also the total population (size) is a benchmark 
value. More complex model formula can now easily be constructed, taking more than one qualitative 
and/or quantitative variable into account. However, “products” of quantitative variables should be 
avoided; we then suggest to create a new variable first. The reader will now be ready to understand the 
following expressions: 
 

� A + B*Z = 1 + A + Z + B.Z ≠ 1 + A + B + Z + B.Z 
� A*B*Z = Z + A.Z + B.Z + A.B.Z 
� (A + B*C)*Z = Z + A.Z + B.Z + C.Z + B.C.Z 

 
It should be noticed that a quantitative variable cannot be a calibration stratum variable. 
 
 
 
III.A.2 The scale parameter 

 
In section II.A we have already discussed the necessity of introducing a scale parameter: it can then 
be argued that, for appropriate choice of the value of the scale, the g-weights (with respect to the 
scaled initial weights) are scattered around 1, which justifies that the special target point 1n  is included 
in the set ΩB; see II.A and II.C. We now discuss this parameter, φ , say, in more detail. 
 
The scale must be strictly positive: φ> 0 . The modified (scaled) model (in standard notation) is 
defined as follows: 
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 min ; ,d g g gT T
BG� �� �φ

�

X t= ∈Ω . (III.1) 

 

The calibration constraints can be written alternatively as φX tTDg = , or X tT φD g� � = . Hence, 

introducing the scale parameter can be seen as the multiplication of the initial (sampling) weights 
dk k=1 / π� �  with the scale φ . The calibration problem can then be solved starting from new initial 

weights, the scaled (initial) weights φd . It will be clear that finally the solution, in terms of the 
calibrated weights w, will not change, for given data. However, the g-weights are altered: if the 
solution is g if no scale parameter is present (or φ= 1), then the new weights, after introducing the 

scale, will be g φ. And then, we have indeed: w = Dg Dgφ φ = . Notice that we could replace the 

objective function in (III.1) with φd gTG� �, but this does not change the calibration problem at all. 
 
Hence the value of φ  is theoretically immaterial. Why then complicating things by introducing one 
more parameter φ? The reason is rather of a practical, numerical, nature. We have experienced that 
our software behaves better if a value of φ  is carefully chosen (or calculated). This is particularly true 
for the truncated linear and for the logit method. For some data sets, g-CALIB-S is likely to fail easier 
if g-weights tend to be large and if either the truncated linear or the logit method is chosen. For those 
methods it seems to be better to assure in advance that the g-weights are centred on 1. This in fact 
means that it should be possible to choose the region ΩB  such that it contains the point 1n . But this 
now indicates that our previous statement that “ φ  is theoretically immaterial” is not completely right! 

The truth is that, strictly speaking, the basic problem min ; ,d g g gT T
BG� �� �

�

X t= ∈Ω  should be 

extended to min ; ,d g g gT T
BG� �� �φ φ

�

X t= ∈Ω , or min ; , *d g g gT T
B BG� �� �φ φ

�

X t= ∈ =−1Ω Ω . 

However, for the linear and for the multiplicative method, this essentially doesn’t change the region 

ΩB , since then either Ω Ω ΩB B
n n

B
* , ,= = −∞ +∞ = −∞ +∞ =− −φ φ1 1	 
 	 
  for the linear method, or 

Ω Ω ΩB B
n n

B
* , ,= = +∞ = +∞ =− −φ φ1 1 0 0
 
 , for the multiplicative method. For the truncated linear and 

logit method we have: Ω Ω ΩB B
n n

BL U L U* , ,= = = ≠− − − −φ φ φ φ1 1 1 1 , in general, if φ≠ 1. It then 

follows that (III.1) is a convenient notation, since in practice one will usually specify a desirable 
region ΩB  in advance. A value for the scale parameter then has to be specified such that (III.1) is 

feasible. In other words, it is possible that, for given ΩB , the problem min ; ,d g g gT T
BG� �� �

�

X t= ∈Ω  

has no solution (and that the software fails), but that, for appropriately chosen φ , the modified 
problem (III.1) is feasible (and that the software doesn’t fail). 
 
The scale φ  can be interpreted as a preliminary and overall up-weighting factor to produce a first 
correction for non-response, given that it is calculated properly. If the constant term is (implicitly or 
explicitly) present in the model, and if one of the calibration variables is this constant, x1 1= , say, 

then a reasonable suggestion is to calculate the scale from the formula: �
�

φ = =

∈
∑

t

d

N

Nk
k s

s

1 , where �Ns is 

an initial (Horvitz-Thompson) estimate of the total population size N, based on the sample s. If s is the 

respondent sample, then this �φ  is indeed the reciprocal of an estimated overall response rate. Of 
course, the scale can be calculated from any other calibration variable. We discuss in chapter IV 
section B how the software can be used to fix a value for the scale, or to instruct the program to 
calculate the scale from the data (for each calibration stratum separately). 
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III.B GENERALISED CALIBRATION AND POST-STRATIFICATION  

 
III.B.1 Complete post-stratification 

 
Consider the following particular calibration problem: 
 

• A is a qualitative variable with a categories, and for each sample element k the vector 

δδδδk
A

k
A

ka
A T= ( ,..., )δ δ1  indicates to which A-category element k belongs, since δkr

A =1 if k 

belongs to the r-th A-category and δkr
A = 0  otherwise. The indicator variables δr

A  (r = 1, …, a) 
may eventually serve as calibration variables. 

• B is a qualitative variable with b categories, and for each sample element k the vector 

δδδδk
B

k
B

kb
B T= ( ,..., )δ δ1  indicates to which B-category element k belongs, since δkc

B =1 if k 

belongs to the c-th B-category and δkc
B = 0  otherwise. The indicator variables δr

B  (c = 1, …, 
b) may eventually serve as calibration variables. 

• The Kronecker product δδδδ ==== δδδδ δδδδk
AB

k
A

k
B⊗ , with ( r b c− +1� � )-th component δkrc

AB  of this 

ab ×1matrix (vector) being equal to δ δkr
A

kc
B× , is the vector of cell indicators in the complete 

cross-classification by A and B. The indicator variables δrc
AB  (r = 1, …, a; c = 1, …, b) may 

eventually serve as calibration variables. 

• Let nrc
AB  be the number of sample elements in cell rc in the complete cross-classification of the 

sample by variables A and B. The sub-sample corresponding to this cell is denoted as src
AB . 

Similarly, we define the sub-samples sr
A , with nr

A  elements, corresponding to the categories 

of A (or A-margins in the cross-classification), and sc
B , with nc

B  elements, corresponding to 
the categories of B (or B-margins in the cross-classification). 

• The calibration vector xk  for element k is defined by xk
T

k
A T

k
B T

k
AB T

= �
�

�
	1, , ,δδδδ δδδδ δδδδ� � � � � � ; notice 

that a constant calibration variable has been included. Notice further that there are many linear 
column dependencies in the resulting design matrix X. If each row would be reduced to, for 
instance, the transposed of the Kronecker product, then an equivalent (full-rank) design matrix 
would be obtained. 

• There is an initial weight vector d. This vector may be specified later. 
• The vector of calibration totals, corresponding to the design matrix X, is written 

t = N N N N N N N N N N NA
a
A B

b
B AB

b
AB AB

b
AB

a
AB

ab
AB T

, ,..., , ,..., , ,..., , ,..., ,...,...,..., ,...,1 1 11 1 21 2 1� � .  N is the 

size of the population, Nr
A  is the size of the population in A-category r, Nc

B  is the size of the 

population in B-category c, and Nrc
AB  is the size of the population in AB-cell rc. We assume 

numerical consistency: N N Nr
A

r

a

c
B

c

b

= =
= =
∑ ∑

1 1

, N Nr
A

rc
AB

c

b

=
=
∑

1

 (r = 1, …, a) and 

N Nc
B

rc
AB

r

a

=
=
∑

1

 (c = 1, …, b). (If the above-mentioned reduced full-rank design matrix is used, 

then t = N N N N N NAB
b
AB AB

b
AB

a
AB

ab
AB T

11 1 21 2 1,..., , ,..., ,...,...,..., ,...,� �  should be used.) 

• The distance function G, or the calibration function F, is not specified (yet); ΩB  is set 
appropriately. 

 
More qualitative variables A, B, C, … may be considered; the generalisation of the present discussion 
is straightforward. 
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Obviously, since all sample elements k in the same cell rc in the cross-classification by A and B have 
the same set of values for the calibration variables, they will be assigned the same g-weight, grc  say. 
Hence, there are only ab unknown variables to be calculated from the system of calibration equations.  
On the other hand, the set of calibration equations can be reduced to a set of only ab equations 

corresponding to the calibration variables δrc
AB  or to the calibration totals Nrc

AB  (the right hand sides in 
these equations). The resulting linear system of ab equations in ab variables generally has a single 
solution. Hence Ω ΩC B∩ , if non-empty, generally contains only one point g, which must be the 
solution of the reduced set of calibration constraints, independent of the choice of the distance 
function. This solution can easily be found: the value of the g-weight grc  follows immediately from 

the calibration constraint corresponding to the calibration variable δrc
AB . This constraint can be written 

as follows: 
 

 d g d g g d Nk k krc
AB

k

n

k rc
k s

rc k
k s

rc
AB

rc
AB

rc
AB

δ
= ∈ ∈

∑ ∑ ∑= = =
1

. (III.2) 

 
Hence: 
 

 g
N

d
rc

rc
AB

k
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∈
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and: 
 

 w d
N

d
k sk k

rc
AB

k

k s

rc
AB

rc
AB

= ∈

∈
∑

for all . (III.4) 

 
It is, of course, assumed that dk

k src
AB∈

∑ ≠ 0 for all cells rc, i.e. that each cell contains at least one sample 

element (with positive initial weight). 
 
Notice again that these general results, for the given calibration problem, are completely independent 
of the choice of the distance function G, or calibration function F, and of the weight vector d. The 
reader, however, will be more familiar with special forms of the formulae (III.3) and (III.4). These are 
now presented. 
 
Application 1 Initial weights are all equal to 1, i.e. d 1= n . Then: 
 

 g
N

n
rc

rc
AB

rc
AB

=      and     w
N

n
k sk

rc
AB

rc
AB rc

AB= ∈for all . (III.5) 

 
This result is applicable, for instance, if the sample is exhaustive (a census), if complete post-

stratification by variables A and B is applied, and if non-response n Nrc
AB

rc
AB≤� �  is to be adjusted for. 

 
Application 2 A simple random sample (SRS) (without replacement, and with fixed size n) is drawn, 

so that all elements have sampling weight d
N

nk = . Then: 
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Notice that the calibrated weights wk  are exactly as in Application 1. 
 
Application 3 An epsem (equal probability selection method) is applied to draw a probabilistic sample, 
so that all elements have the same sampling weight d dk = 0 , say. Then: 
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N

n d
rc

rc
AB

rc
AB

=
0

     and     w
N

n
k sk

rc
AB

rc
AB rc

AB= ∈for all . (III.7) 

 
Again the same formula for the calibrated weights is obtained. SRS (Application 2) is an important 
special case of epsem sampling. An epsem is also called a self-weighting design. Epsem samples may 
be the result of a (very) complex sampling design, such as some two-stage designs, with PPS 
(probability proportional to size) sampling of PSUs, and some SRS of SSUs in the selected PSUs (see 
Särndal et al, 1992, p.141 for further details). 
 
Application 4 Suppose a sample is drawn by (fixed size) stratified simple random sampling (STR-
SRS). Let the a priori or sampling strata be indexed by h; ~sh  is the h-th sampling stratum in the 

sample. The sampling weights are d
N

nk
h

h

=  for all k sh∈ ~ . We distinguish two situations: 

 

� Post-strata are subsets of (or coincide with) sampling strata: for any rc, s src
AB

h⊂ ~  for some h. 
Then: 
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N
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This is, once again, the same formula for the calibrated weights wk  as for epsem sampling. 
 

� Post-strata are cutting across sampling strata (the general situation); let nh rc,  be the number of 

sampled elements in the intersection ~s sh rc
AB∩ . Then: 
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Looking carefully at all four applications, we can draw useful conclusions with respect to statistical 
practice. We start with the formulation of properties of the sampling design: 
 

Cond 1 There is some stratification (in the initial phase) of the sampling method. 
 
Cond 2 The sampling design is self-weighting within each sampling stratum. 
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And we add a property for the estimation procedure: 
 

Cond 3 Post-stratification is involved in the estimation phase, and each post-stratum is a subset of 
some sampling stratum. 

 
If Cond 1 to 3 are satisfied, then the following practical conclusions can be drawn: 
 

Pc  1 The calibrated weights are the same for all sample elements in a post-stratum; this 
common calibrated weight only depends on the size of the population and the size of 
the sample within the post-stratum. 

 
Pc  2 The initial (sampling) weights do not appear explicitly in the formula for the 

calibrated weights. 
 
Pc  3 Hence, ignoring the sampling weights does not affect the calibrated weights. 
 
Pc  4 For purposes of calibration (only), the initial weights can conveniently be set to 1 

(or any other constant) without affecting the final calibrated weights. 
 
These results are useful in many practical situations. We have already mentioned a complex but self-
weighting design in Application 3; there could be one or more (first) stage of stratification in this 
sampling design. At Statistics Belgium, for several complex designs, conditions Cond 1 and Cond 2 
are (at least approximately) satisfied. If then, in the estimation phase, post-strata can be carefully 
chosen, in such a way that also Cond 3 is satisfied, then extrapolation turns out to be extremely simple. 
Notice that the statistician would not have to choose a calibration function F. No iteration is involved 
in the calculation of g-weights and calibrated weights; and therefore general purpose software would 
suffice the get the results. 
 
This is probably what makes post-stratification a popular technique in many governmental statistical 
agencies. However, the reader should be aware of the fact that these conclusions are only relevant as 
far as point estimation of parameters of study variables (totals, means, …) is concerned. Variance 
estimation (for the estimators of the parameters), on the other hand, is a completely different story: 
aspects of the sampling design cannot that easily be ignored (or hidden by choosing appropriate post-
strata) for that purpose. Moreover, it is definitely not an optimal strategy to decide to stick to post-
stratification techniques and to ignore the overwhelming existence of very attractive, elegant and 
efficient techniques and accompanying software, which give the statistician a huge flexibility, 
hopefully resulting into better weighting schemes. I do not say that the era of post-stratification at 
Statistics Belgium is finished: statistical practice does not have to be complex in order to be efficient. 
But the reader will know that, for many practical reasons, forced for instance by fieldwork or cost 
limitations, a sampling plan often reaches some degree of complexity, and the subsequent estimation 
procedures may then be a bit tricky too. 
 
Moreover, post-stratification as discussed so far almost always suffers from extreme fragmentation of 
the sample (and sometimes the population too), a problem that is discussed in the next paragraphs, and 
to which some solutions are presented in the next sub-section III.B.2 and in section III.C. 
 
In this section we have discussed instances of complete post-stratification. Deville et al (1993) define 
complete post-stratification (based on two classifying qualitative variables) as the calibration problem 

wherein population cell sizes Nrc
AB  are known (and used as benchmark values). Notice that these cell 

sizes may be replaced by appropriate estimates, obtained from an external source. (In household 
surveys, the Labour Force Survey (LFS) is often used to deliver estimates of population totals or 
counts.) 
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A well-known problem, as already mentioned, with complete post-stratification is that some or all 
post-strata may become extremely small, or even empty, such that the resulting g-weights and 
calibrated weights will become unstable, or even undefined. At Statistics Belgium, this problem has 
been resolved traditionally by regrouping original post-strata (corresponding to cells in a cross-
classification) into new post-strata, all of which should have a reasonable size in the sample. The 
resulting calibration problem is still an instance of a complete post-stratification problem, based on 
one or more modified classification variables, however. 
 
In the next section III.C in this chapter we discuss the popular method of (generalised) raking, where 
calibration is no longer on cell counts in a cross-classification of the population, but on marginal 
counts, corresponding to the categories of the classifying variables. Raking methods generally solve 
the problem of instability of g- and calibrated weights in complete post-stratification. It also works if 
there are some empty cells, as long as the marginal categories are non-empty (and not too small). 
Raking methods deserve our special attention, since we will have interesting applications, to be 
discussed in chapter 5. 
 
Raking, or calibration on known marginal counts, is just one subclass of methods, within the broader 
class of incomplete post-stratification methods. In the next sub-section III.B.2 we discuss incomplete 
post-stratification methods that fall, at least in some sense, between complete post-stratification 
methods as discussed here before, and raking methods that will be discussed in section III.C. 
 
 
 
III.B.2 Incomplete post-stratification 

 
Deville et al (1993) describe incomplete post-stratification as follows: “Any case for which the 
auxiliary information is less detailed than a complete knowledge of all cell counts can be described as 
incomplete post-stratification”. (This is not a rigorous definition.) The same authors equivalently use 
generalised raking to name this class of calibration problems. However, I prefer to reserve the term 
“generalised raking” for that subclass of incomplete post-stratification methods, where calibration is 
on margins corresponding to (at least two) classification variables. This terminology, I believe, is 
closer to the original terminology used by Deming and Stephan (1940), when they proposed the 
classical raking ratio technique. Generalised raking will be discussed separately in the next section 
III.C, for reasons that will become clear over there. 
 
The same notation as in the previous sub-section is used. Suppose that initially a complete post-

stratification problem is considered, but that some sample cell sizes nrc
AB  are too small (possibly zero). 

Suppose, on the other hand, that (1°) marginal sample sizes nr
A  and nc

B  are large enough, and (2°) 
after collapsing original categories of A and/or collapsing original categories of B the new cell sizes 

nr c
A B
' '
' '  are all large enough. Here A'  and B'  denote the modified classification variables, derived 

respectively from A and B by collapsing categories for one or both variables. Categories of A'  are 

indexed r a' ,..., '=1  and categories of B'  are indexed c b' ,..., '=1 , where a a'≤  and b b'≤ . Let Nr c
A B
' '
' '  be 

the population cell sizes in the new cross-classification. One could consider the new complete post-
stratification problem based on the classification variables A'  and B' . The result would be that more 
stable g-weights and calibrated weights are obtained, but, formally, nothing new would have been 
done. 
 
An interesting and elegant calibration problem (Deville et al, 1993) can be obtained by considering for 

each sample element k the new calibration vector x' , , , ' '
k
T

k
A T

k
B T

k
A B T

= �
�

�
	1 δδδδ δδδδ δδδδ� � � � � � , where δδδδk

A B' '  is the 

Kronecker product δδδδ ==== δδδδ δδδδk
A B

k
A

k
B' ' ' '⊗ , with obvious definition of δδδδk

A'  and δδδδk
B ' . Notice that the 
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calibration vector does involve (explicitly) neither δδδδk
A'  nor δδδδk

B ' , but the original δδδδk
A  and δδδδk

B . This 

means that calibration is on original marginal counts Nr
A  and Nc

B  and, at the same time, on new cell 

counts Nr c
A B
' '
' ' . 

 
Now, sample elements in a new cell r c' '  do not necessarily have the same set of values for the 
calibration variables, and therefore may have different g-weights. This complex dependence of g-
weights on calibration variables through the calibration function F implies that it is not possible 
anymore to reduce the system of calibration variables to a simple set of linear equations that can be 
solved algebraically. Thus the system has to be solved iteratively, and the g-weights will generally 
depend on the choice of the distance function or calibration function. 
 
To make things perfectly clear, we illustrate some aspects by means of a small example. Let’s start 
with a complete post-stratification problem, based on a 2 × 3 classification, schematically represented 
(without calibration totals) as follows: 
 
 

Table 3.1  A two-dimensional contingency table: complete post-stratification 
 

 B-category  

A-category 1 2 3 
Sample 
margins 

1 
(1,1,0,1,0,0,1,0,0,0,0,0) 

15 
(1,1,0,0,1,0,0,1,0,0,0,0) 

0 
(1,1,0,0,0,1,0,0,1,0,0,0) 

10 25 

2 
(1,1,0,1,0,0,0,0,0,1,0,0) 

25 
(1,1,0,0,1,0,0,0,0,0,1,0) 

18 
(1,1,0,0,0,1,0,0,0,0,0,1) 

2 45 

Sample 
margins 

40 18 12 70 

 
 
Each cell contains the calibration vector for each of the sample elements in that cell, and the sample 
cell count. Post-stratification is not possible from this table, since one cell size is zero (and another one 
is small). However, collapsing the 2nd and 3rd column, a new incomplete post-stratification problem is 
obtained, with the following schematic representation: 
 
 

Table 3.2  A two-dimensional contingency table: incomplete post-stratification (1) 
 

 B-category  
 1 2 3  
 B' -category  

A-category 1 2 
Sample 
margins 

1 
(1,1,0,1,0,0,1,0,0,0) 

15 
(1,1,0,0,1,0,0,1,0,0)          (1,1,0,0,0,1,0,0,1,0) 

10 25 

2 
(1,1,0,1,0,0,0,0,1,0) 

25 
(1,1,0,0,1,0,0,0,0,1)          (1,1,0,0,0,1,0,0,0,1) 

20 45 

Sample 
margins 

40 18 12 70 

 
 
Notice that the marginal counts, 18 and 12, have not been collapsed. This is essentially why the new 
calibration problem is not a complete post-stratification problem anymore. 
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If we compare the corresponding calibration design matrices X and X' , then it is noticed that 4 
columns of X, corresponding to the calibration variables δ δ δ δ12 13 22 23

AB AB AB AB, ,  and , are transformed into 2 
columns of X' , corresponding to the calibration variables δ δ12 22

AB AB' ' and  as follows: 
 

 
δ δ δ

δ δ δ
12 13 12

22 23 22

AB AB AB

AB AB AB

+ =

+ =

�
��
��

'

'
 (III.10) 

 
Strictly speaking we should also include the relationships δ δ11 11

AB AB= '  and δ δ21 21
AB AB= ' , but these do not 

change any column in the original matrix X. From a practical point of view, the remarks in this 
paragraph are useful, as we will demonstrate numerically in chapter 5, for two reasons: (1°) it indicates 
how the new design matrix X'  can be constructed from X in a straightforward way, by some simple 
summations, and (2°) it opens a door to alternative modifications of the original complete post-
stratification problem, which are practically treated in a very similar way, as illustrated in the next 
paragraphs. 
 
Indeed, consider again the above numerical example. If one would decide that (only) 2 elements in a 
cell is enough for calibration and estimation, then only the cells containing 0 and 10 elements could be 
collapsed. I.e. δ δ11 11

AB AB= ' , δ δ δ12 13 12
AB AB AB+ = '  and δ δ2 2 1 3c

AB
c

AB c c= = ='
' ( ' ,..., ) , or, schematically: 

 
 

Table 3.3  A two-dimensional contingency table: incomplete post-stratification (2) 
 

 B-category  
 1 2 3  
 B' -category  

A-category 1 2 
Sample 
margins 

1 
(1,1,0,1,0,0,1,0,0,0,0) 

15 
(1,1,0,0,1,0,0,1,0,0,0)          (1,1,0,0,0,1,0,0,1,0,0) 

10 25 

2 
(1,1,0,1,0,0,0,0,1,0,0) 

25 
(1,1,0,0,1,0,0,0,0,1,0) 

18 
(1,1,0,0,0,1,0,0,0,0,1) 

2 45 

Sample 
margins 

40 18 12 70 

 
 
The latter method allows collapsing cells in a more refined way: an individual cell can be collapsed 
with any other individual cell. The previous method merely allows collapsing each cell in a column 
(row) with each corresponding cell in any other column (row). Finally, it may be noticed that cells that 
are collapsed do not necessarily have to be “neighbouring” cells, although this will be a more 
convenient approach if the classification variables are ordinal. 
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III.C THE RAKING RATIO TECHNIQUE FOR CROSS-TABULATED DATA 

 
III.C.1 Introduction: equal g-weights 

 

In generalised calibration the g-weights are g Fk k
T= x λλλλ� �  ( ,..., )k n=1 , or g Xλλλλ λλλλ� � � �= F . Hence, if k 

and k’ are sample elements with the same auxiliary vector x xk k= ' , then their g-weights are equal to 

each other: g gk k= ' . 
 
Let the calibration model depend on qualitative calibration variables A, B, … only. Then within each 
cell in a cross-classification of the sample s by the variables A, B, …, all sample elements will have the 
same auxiliary vector, and therefore the same g-weight. Let c be indexing the cells in the cross-
tabulation ( c C= 1,...,  if there are C cells), and let ~gc  be the common g-weight for all sample elements 

in cell c; let sc  be the sub-sample of elements in cell c. Then the j-th calibration constraint can be 
rewritten as 
 

w x d g xk kj
k s

k k kj
k s∈ ∈

∑ ∑= =  g x g x tk kj
k s

c kj

k sc
j

c

� �

∈ ∈
∑ ∑∑= =~ . 

 

Define 
� �
x zkj

k s

jc
c∈

∑ = , i.e. the sum of expanded values of the j-th calibration variable in cell c, which in 

fact is the weighted sum of the values of the j-th calibration variable in cell c, the weights in this sum 
being the initial (sampling) weights. This shows that the calibration constraints can be written in terms 
of weighted totals over sample elements in the cells of a cross-tabulation; the individual values and 

initial individual weights have collapsed into these sums, i.e. ~g z tc jc
c

j
�∑ = . 

 
A similar argument is used to show that the objective function also can be written in terms of cell 
totals: 
 

d gT
k k

k s
c k

k sc

G d G g G g d
c

� � 	 
 	 
= =
∈ ∈
∑ ∑∑ ~ . 

 

The weights in this sum are the totals of the initial weights within the cells, that is: d dk

k s

c
c∈

+∑ = . 

 

Hence the expanded data matrix 
�
X d|� �  can be collapsed into a matrix of weighted totals, the collapsed 

data matrix 
�
Z d| +� � , where the ( C m× )-matrix 

�

Z has element 
�

z jc  in the c-th row and j-th column, and 

the ( C ×1)-vector d+  has c-th element dc
+ . Also ~ ~ ,..., ~g = g gC1� � , and 

~ΩB  follows immediately from 

ΩB , e.g. 
~

,ΩB
C

L U=  if ΩB
n

L U= , . Then the calibration problem min ; ,d g g gT T
BG� �
 �

�

X t= ∈Ω  

can be reformulated equivalently as  
 

 min ~ ; ~ , ~ ~
d g Z g g+ = ∈T T

BG� �" #
�

t Ω . (III.11) 

 

An equivalent formulation of a general calibration model min ; ,d g g gT T
BG� �
 �

�

X t= ∈Ω  is 

min ; ,d g Dg gT T
BG� �� �X t= ∈Ω . The latter formulation is useful in relation to our SPSS software 

modules. Indeed, as we will explain in full detail in chapter IV, the main input for the calibration 
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module g-CALIB consists of the data matrix X d|� �  and the vector t, in case of individual data. In 

order to be able to use our software also for solving calibration models for grouped data (examples are 
collapsed individual data as explained, or cross-classified data), i.e. models of the form (III.11), we 
rewrite this model as follows: 
 

 min ~ ;
~ ~ , ~ ~

d g Z D g g+ + = ∈T T
BG� �" #t Ω , (III.12) 

 

where 
~Z D Z= +−1 �

, or 
�

Z D Z= + ~
, with D d+ += diag� � . It follows then that for a grouped data problem 

the data matrix 
~

|Z d+� �  and the vector t (the same as for individual data!) are the primary input for our 

software g-CALIB. 
 
We now illustrate the usefulness of the above general idea, that of collapsing individual data, in two 
situations that are of great interest in practice. 
 
 
 
III.C.2 Collapsing the data to reduce the size of the calibration problem 

 
The dimension of the data matrix X d|� � , i.e. n rows and m + 1 columns, for individual data, essentially 

determines the size of a calibration problem. It would be useful if this data matrix could be reduced. 
The above idea of collapsing the data provides an efficient solution for that purpose. The above 

reasoning fully explains how individual data X d|� �  have to be transformed into grouped data 
~

|Z d+� � . 

Briefly, the procedure is as follows: 
 

� Aggregate rows in X by qualitative variables A, B, …, using weights d. The result is
�

Z , as 
defined above. 

� Aggregate rows (elements) in d by qualitative variables A, B, …. The result is d+ , as defined 
above. 

� Compute 
~Z D Z= +−1 �

, with D d+ += diag� � . 

 

The resulting data matrix 
~

|Z d+� �  has size C × (m +1), wherein C is the number of (non-empty) cells in 

a cross-classification by the qualitative variables A, B, …. The reduction factor is roughly 1 over the 
average number of individual data points in a cell. Notice that the number of columns in the data 
matrix has not changed, i.e. aggregation is column by column. 
 
After collapsing individual data and calculating g-weights and calibrated weights, it will, in most 
applications, be necessary to turn back to the individual data. This is true for calibration estimation of 
totals of survey variables, as well as for estimation of variances of estimators of totals, within the 
generalised calibration framework (see section III.G). 
 
Notice that elements in 

~
Z  are weighted cell averages: 

 

 ~z
z

d

x

d

d x

d
jc

jc

c

kj

k s

k

k s
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k s
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k s
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∈
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. (III.13) 
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As we shall see in section III.D, collapsing data has a lot in common with the clustering technique to 
impose equal g-weights in clusters. 
 
 
 
III.C.3 Classical raking ratio in a contingency table 

 
A 2-dimensional contingency table is a 2-way classification of (observed or expected) frequencies. 
The classification variables are qualitative. In survey statistics, one may want to adjust the frequencies 
in the table in order to meet some restrictions. The classical raking ratio technique is used to adjust the 
cell frequencies such that the margins in the table of adjusted frequencies are equal to fixed values. A 
common situation is where the observed frequencies are obtained from a sample, and the fixed 
margins are the marginal frequencies of the classification variables in the (finite) population from 
which the sample has been drawn. The general form of a contingency table, extended with marginal 
population frequencies is as in table 3.4. 
 
 

Table 3.4  A two-dimensional contingency table, extended with population margins 
 

 B-category   
A-category �  c �  Sample 

margins 
Population 

margins 
�   �     
r �  nrc  �  nr+  Nr

A  

�   �     
Sample margins  n c+   n  

Population margins  Nc
B    N 

 
 
Our problem here is to show that the raking ratio problem for a contingency table perfectly fits into the 
generalised calibration framework, and to outline how the data are to be transformed, in order to be 
able to solve the raking ratio problem by means of our software g-CALIB-S. For a discussion of the 
raking ratio method, we refer to Deville et al (1993). We start with a small hypothetical example. 
Consider the data in table 3.5, showing the joint distribution of variables A and B in a sample of size n 
= 22, and the marginal distribution of variables A and B in a population of size N = 100. Variable A 
has a = 2 categories, variable B has b = 3 categories; the number of cells is C = a × b = 6. 
 
 

Table 3.5  An example of a 2 × 3 contingency table, extended with population margins  
 

 B-categories   
A-categories 1 2 3 Sample 

margins 
Population 

margins 
1 4 5 3 12 50 
2 5 2 3 10 50 

Sample margins 9 7 6 22  
Population margins 30 40 30  100 

 
 
We have implicitly assumed that the sample data in table 3.5 are obtained from individual data, as 
given in the first three columns in table 3.6. Notice that we assume that all individuals have the same 
weight 1 (column 3). 
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Table 3.6 Original individual data, with corresponding design matrix X, and 
calibration totals t 

 
Original data Design matrix X 
A B d X0 A1 A2 B1 B2 B3 
1 1 1 1 1 0 1 0 0 
1 1 1 1 1 0 1 0 0 
1 1 1 1 1 0 1 0 0 
1 1 1 1 1 0 1 0 0 
1 2 1 1 1 0 0 1 0 
1 2 1 1 1 0 0 1 0 
1 2 1 1 1 0 0 1 0 
1 2 1 1 1 0 0 1 0 
1 2 1 1 1 0 0 1 0 
1 3 1 1 1 0 0 0 1 
1 3 1 1 1 0 0 0 1 
1 3 1 1 1 0 0 0 1 
2 1 1 1 0 1 1 0 0 
2 1 1 1 0 1 1 0 0 
2 1 1 1 0 1 1 0 0 
2 1 1 1 0 1 1 0 0 
2 1 1 1 0 1 1 0 0 
2 2 1 1 0 1 0 1 0 
2 2 1 1 0 1 0 1 0 
2 3 1 1 0 1 0 0 1 
2 3 1 1 0 1 0 0 1 
2 3 1 1 0 1 0 0 1 

d xk kj
k s∈
∑  22 12 10 9 7 6 

t j  100 50 50 30 40 30 
 
 
A model for calibration on margins of qualitative variables A and B can be written 1 + A + B (section 
III.A.1). A design matrix for this model is as in the last six columns of table 3.6; the headers of these 
columns are appropriate names for the six calibration variables. The last row in the table contains the 
population margins, i.e. the calibration totals t j ; the next to last row contains the initial weighted 

sample totals of the calibration variables. Following the collapsing procedure as outlined before, we 

obtain the collapsed data matrix 
�
Z d| +� �  as in the first 7 columns of table 3.7, and the grouped data 

matrix 
~

|Z d+� �  as in the first and 6 last columns of table 3.7. 

 
Notice that in the constructed individual data, each calibration variable x j  is constant within any cell c, 

from which we derive that 
 
 ~z xcj kj=    for any   k sc∈ , and any   j = 1, …, m. (III.14) 
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Table 3.7 Collapsed data matrix 
�
Z d| +� �  and grouped data matrix 

~
|Z d+� � , obtained by 

transformation of individual data X d|� �  

 

d+  Collapsed design matrix 
�
Z  Grouped design matrix 

~Z  
 X0 A1 A2 B1 B2 B3 X0 A1 A2 B1 B2 B3 

4 4 4 0 4 0 0 1 1 0 1 0 0 
5 5 5 0 0 5 0 1 1 0 0 1 0 
3 3 3 0 0 0 3 1 1 0 0 0 1 
5 5 0 5 5 0 0 1 0 1 1 0 0 
2 2 0 2 0 2 0 1 0 1 0 1 0 
3 3 0 3 0 0 3 1 0 1 0 0 1 

     d zc cj
c

C
+

=
∑ �

1

 22 12 10 9 7 6 

     t j  100 50 50 30 40 30 
 
 
Obviously, the calibration results from individual data and from grouped data in this example are 
numerically the same, given that in both calibration problems the same distance or calibration 
functions are used. For the raking ratio method, the calibration function is the exponential function. 
The fact that our algorithm converges to the same solution as the classical alternating method, often 
called iterative proportional fitting, is not shown theoretically in this text. 
 
The above small example demonstrates how, directly from a contingency table, the data matrix 

~
|Z d+� �  has to be constructed. SPSS modules are discussed later; rather than using the general 

collapsing procedure, we use (III.14) to implement a transformation. The same technique can be used 
if the cells in a cross-classification do not contain observed frequencies, but general real values. We 
illustrate this in section V.F. Extension of the above procedures from 2 qualitative variables to 3 or 
more is straightforward. 
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III.D IMPOSING EQUALITY OF G-WEIGHTS IN CLUSTERS 

 
In section III.C, we have discussed how the survey data can be collapsed over groups of elements with 
the same calibration vector. This technique can be used at any time and may be useful to reduce the 
length of the survey data file (i.e. the number of rows in the design matrix), and therefore the time 
needed to perform the computations. Thus, collapsing survey data has there been introduced first and 
foremost for practical purposes. Nevertheless, we discussed a useful practical application of 
collapsing: adjusting cross-classified data, wherein individual observations are not available, but 
survey data are only available at an aggregated level. The technique is illustrated in section V.F, using 
aggregated data on labour volume and labour compensation. 
 
When survey data are collapsed, values of calibration variables are not changed: several elements with 
the same calibration vector are replaced with a single new (higher level) element with the same 
calibration vector. The new “element”, however, gets an initial weight that is the sum of the initial 
weights of the original elements that it “represents”. 
 
In this section we discuss a technique of aggregating data, which does have something in common 
with collapsing data, but its rationale is rather of a different nature. Indeed, we now want to impose the 
same g-weights for elements with different calibration vectors. From our statement in the first 
paragraph of section III.C.1, it follows that, if an ordinary calibration problem is set up, the original 
survey data must be transformed, because otherwise one could only be lucky to obtain g-weights that 
satisfy some pre-specified equality constraints. We now show this need for a transformation of the 
survey data, starting from an extended calibration problem; the new calibration problem can indeed be 
formulated in terms of the original data, but adding some additional constraints, as follows: 
 

 min ; , ,d g g g gT T
BG� �� �

�
X t= ∈Ω equality restrictions on . (III.15) 

 
We will show now that this new calibration problem can be transformed into an ordinary problem of 

the form min ; ,b f Y f s fT T
BG� �� �

�
= ∈Θ , wherein b, f, Y, s and ΘB  are to be specified, so that finally 

our software can still be used to solve the problem. In order to formalise this new modified calibration 
problem, we first have to introduce some new concepts. 
 
A subset of elements in the sample s, for which the g-weights have to be equal, not because of equal 
calibration vectors, but since these equality constraints are imposed by the modeller, is called a cluster. 
In practice a cluster is determined by one or more qualitative variables. Such a variable cannot be a 
calibration variable (or a variable from which a set of calibration variables is derived), but is actually 
one of the sampling and/or survey variables, which naturally follows from the survey context. A 
typical example of a cluster is, in case of persons as elements in the sample s, the household to which 
the element belongs. In business surveys, a cluster could be an enterprise as a set of different local 
units (the elements in s). In labour cost statistics, a cluster could be an enterprise or a local unit as the 
set of employees (the elements of s) which are employed in that enterprise or local unit. Since the 
technique discussed in this section is built up from the idea of clusters, it will from now on be called 
the clustering technique, or, simply, clustering. Notice that a cluster in this calibration context will 
often – but not necessarily always! – be nothing more (or less) than a cluster in the sampling design, if 
some cluster sampling technique is applied. 
 
Suppose that the sample s contains n elements, and that these elements are members of L clusters (L ≤ 

n). Let sl  be the l-th cluster, l = 1, …, L; notice that s sl
l

L

=
=1
� . We then construct a n × L matrix C, the 

cluster-membership matrix, where each row corresponds to an element of the sample s and each 
column corresponds the a cluster, and whose entries c k n l Lkl ( ,..., ; ,..., )= =1 1  are defined as follows: 
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c k s

k s
kl l

l

= ∈
= ∉

1

0

if  

if  .
 

 
Such a matrix can easily be constructed with our software; see later. Nieuwenbroek (1997) has 
introduced exactly the same matrix (but is calling it L); if L = n, then C is the identity matrix of order 
n. It is easy to see that the matrix product C d dT = +  is a vector of length L, whose l-th element is the 
sum of the initial weights for elements in the l-th cluster. Given that the g-weights are constant within 
all clusters, let g gk l= ( )  for all elements k sl∈  and for all clusters sl ; i.e. g l( )  is the common g-

weight for elements in the l-th cluster. Let ~g  be the L-vector of g-weights g l( ) . The objective function 

in (III.15) can now be rewritten: d g d C g C d g d gT T T T TG G G G� � � � � � � � � �= = = +~ ~ ~ . For convenience we 

assume that the rows of the design matrix X, of the clustering matrix C and of the initial weight vector 
d are ordered according to the clusters, i.e. sample elements within the same cluster have succeeding 

rows in these matrices and vector. It then follows that the calibration constraints 
�
X tT g =  can be 

written equivalently as C gT T�
X t� � ~ = , or 

�
H gT ~ = t  where 

� �
H C= T X . Notice (1°) that the vector of 

calibration totals has not been changed, and (2°) that 
�
H  is the (L × m)-matrix with elements 

� �
h d x xlj k kj

k s
kj

k sl l

= =
∈ ∈
∑ ∑  ( ,..., ; ,..., )l L j m= =1 1 . Finally, let 

~ΩB  be appropriately modified – e.g. 

~
,ΩB

L= +∞0 �  if originally it were 0,+∞�n  – then the calibration problem can be written equivalently 
as 
 

 min ~ ; ~ , ~ ~
d g H g g+ = ∈T T

BG� �" #
�

t Ω . (III.16) 

 
Thus, this transformed calibration problem is formally an ordinary calibration problem, and it will 
therefore be possible to solve it with our software, once the data are transformed appropriately. 
 
The result is basically the same as the general result in section III.C.1, but our derivation in this 
section followed a slightly different path, since clusters are sets of elements with generally different 
calibration vectors, whereas cells in section III.C.1 are sets of elements with the same calibration 
vector. Moreover, cells are defined by means of qualitative calibration variables, while clusters are 
defined by means of qualitative cluster variables, which are not treated as calibration variables. 
 
I intend to extend our software, such that a cluster variable is taken automatically into account. This 
should not be difficult at all: the survey data file (see section IV.B.3) should include a cluster variable, 
and aggregation by this cluster variable is then a straightforward task in SPSS. As long as the software 
cannot deal with a cluster variable, one should transform the data him/herself. For that reason, the 
following reformulation of (III.16) is more appropriate, as it indicates clearly how the data are to be 
prepared if clustering has to be taken into account: 
 

 min ~ ;
~ ~ , ~ ~

d g H D g g+ + = ∈G T
B� �" #t Ω , (III.17) 

 

where, as in section III.C.1, at least formally, 
~H  is defined as 

~H D H= +−1 �
, or 

�
H D H= + ~

, with 

D d+ += diag� � . Notice that the entries of the matrix 
~H  are weighted averages of the values of 

calibration variables within clusters, i.e. for l = 1, …, L and j = 1, …, m : 
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~
h

d x

d
lj

k kj
k s

k
k s

l

l

= ∈

∈

∑
∑

. (III.18) 

 
Finally, implementation will be rather straightforward, since, as mentioned already, the cluster-
membership matrix C can easily be constructed (using the macros to be discussed in section IV.B.6), 

and because of the following relationships: D C DC C d+ = =T Tdiag� �  and 

~ ~H D C X = D C DX= +− +−1 1T T , which show how to find the new data structures for the clustered 
problem from the original data structures, using the clustering transformation C. 
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III.E SIMULTANEOUS CALIBRATION ON TWO LEVELS OF AUXILIARY INFORMATION 

 
III.E.1 The general problem 

 
This section deals with generalised calibration for the following more complex survey data instance: 
 

(i) Ultimate sampling elements k, in the element sample s of size n, are clustered into L ultimate 

clusters s l( )  with respective sizes nl , where s s l
l

L

=
=

( )
1
� . 

(ii) Element-level auxiliary information is stored in an element-level calibration design matrix X, 
with dimension n m× , and in a ( n ×1)-vector t of calibration totals. 

(iii) Element-level sampling (or initial) weights are stored in a ( n ×1)-vector d, with elements dk . 

Let D d= diag� � , and 
�
X DX=  the expanded design matrix. 

(iv) Cluster-level auxiliary information is stored in a cluster-level calibration design matrix Z, 
with dimension L p× , and in a ( L ×1)-vector s of calibration totals. 

(v) Cluster-level sampling (or initial) weights are stored in a ( L ×1)-vector 
~d , with elements 

d l( ) . Let 
~ ~D d= diag� � , and 

�
Z DZ= ~

 the expanded design matrix. 

 
For many surveys, in practice, we can moreover assume that sampling weights for elements within a 
cluster are constant and equal to the corresponding cluster-level sampling weight:  
 

(vi) d d k sk l l= ∈( ) ( )if , l = 1, …, L and k = 1, …, nl . 

 
So we will work under this assumption throughout. 
 
As in the previous section, let C be the n L×  cluster-membership matrix, and let d C d+ = T  be the 
( L ×1)-vector of sums of element-level sampling weights within clusters. Under assumption (vi), we 

have d C d DC 1+ = =T T
n

~
, i.e. the l-th element of d+  is n dl l( ) . 

 
An example of the above situation is often met in household surveys: clusters are households, and are 
selected according to possibly a complex sampling design. Within households (or clusters), individuals 
(the ultimate sampling elements) are all selected for participating in the survey. Then it is indeed well 
known that (vi) is satisfied. Auxiliary information is usually available at household as well as at 
individual level (and this information is often already used at the sampling design stage). For instance, 
the total numbers of individuals and households living in large geographical areas are known, and for 
each household, and therefore also for each individual, it is known in which area it lives. 
 
To tackle such a complex problem, we can proceed in several ways, depending on what kind of 
calibrated weights we want to obtain, and which auxiliary data are thought to be of interest for 
calibration. The ultimate aim of this section is to discuss how element-level and cluster-level data can 
be integrated into a single calibration problem. In each of the next sub-sections we will also indicate 
what are the consequences of the applied calibration technique on estimation of totals of element- as 
well as cluster-level study variables. 
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III.E.2 Element-level calibration, ignoring cluster-level auxiliary information 

 
This is an ‘ordinary’ generalised calibration problem, formulated as 
 

 min ; ,d g g gT T
BG� �� �

�
X t= ∈Ω , (III.19) 

 

where 
�
X DX= . Solving this problem, we get g-weights g Fk k

T= x λλλλ� � , where λλλλ  is an optimal m-

vector of Lagrange multipliers. These g-weights vary across elements, and need not be the same for 
elements within the same cluster. For estimation of totals of element-level study variables y, we apply 
the following formula: 
 

. �
( )t d g y d F yy k k k

k s
l k

T
k

k sl

L

= =
∈ ∈=

∑ ∑∑ x λλλλ� �
1

. (III.20) 

 
Estimation of the total of a cluster-level study variable y is not immediately obvious. Consider for 
instance the variable “household size” (i.e. number of individuals in a household, if clusters are 
households). An ad hoc strategy can be applied: artificially transform the cluster characteristic y into 
an element characteristic, by assigning the value y nl l( )  to element k if k s l∈ ( ) . Then: 

 

. � ( )
( ) ( )t d g

y

n
d

F

n
yy k k

l

lk s
l

k
T

k s

l
l

l

L

= =
∈

∈

=
∑

∑
∑

x λλλλ� �

1

. (III.21) 

 
This is equivalent to constructing a cluster-level g-weight from the estimated element-level g-weights 

as an arithmetic average: g

F

nl

k
T

k s

l
( ) = ∈

∑ x λλλλ� �
. (We’ll see later that this technique is applied currently in 

the Labour Force Survey at Statistics Belgium (section V.B.3).) If the cluster variable is one of the 
variables z j , then we get an estimate �tz j

 which is not necessarily equal to the fixed total s j  (j = 1, …, 

p). 
 
 
 
III.E.3 Cluster-level calibration, ignoring element-level auxiliary information 

 
This too is an ‘ordinary’ generalised calibration problem, formulated as 
 

 min
~ ~ ; ~ , ~ ~d g Z g s gT T

BG� �" #
�

= ∈Ω , (III.22) 

 

where 
�
Z DZ= ~

. Solving this problem, we get g-weights g Fl l
T

( ) = z γγγγ� � , where γγγγ  is an optimal p-

vector of Lagrange multipliers. These g-weights vary across clusters. For estimation of totals of study 
variables y, we apply the following formulae: 
 
• if y is a cluster-level variable: 

 

 �
( ) ( ) ( )t d g y d F yy l l l

l

L

l l
T

l
l

L

= =
= =
∑ ∑

1 1

z γγγγ� � , (III.23) 



  

 –  53  – 
   

 

 
• if y is an element-level variable: 

 

. �
( ) ( )

( ) ( )

t d g y d g y d F yy k k k
k s

k l k
k sl

L

l l
T

k
k sl

L

l l

= = =
�

�
��

�

	




∈ ∈= ∈=
∑ ∑∑ ∑∑

1 1

z γγγγ� � . (III.24) 

 
Notice that the element-level calibration variables x j mj ( ,..., )=1  can be considered as element-level 

study variables, but that �

( )

t d g x F d x tx k k kj
k s

l
T

k kj
k sl

L

jj

l

= = ≠
∈ ∈=
∑ ∑∑ z γγγγ� �

1

, generally, where t j  is the 

initially fixed total for that variable x j . 

 
 
III.E.4 Element-level calibration, imposing constant element-weights within clusters, 

but still ignoring other cluster-level auxiliary information 

 
One of the advantages of formula (III.24), as opposed to formula (III.20), for estimation of totals of 
element-level study variables, is that elements in the same cluster have the same g-weights, which may 
be expected to result into more stability on the element-level, and to more stable estimates of totals of 
element-level variables. This stability is a consequence of calibration on cluster-level auxiliary 
information only. Stability can also be achieved by clustering (section III.D), when calibration is on 
element-level auxiliary information only. We know from section III.D that the restricted calibration 
problem, using element-level auxiliary information only, but imposing equal g-weights within clusters, 
can be formulated as follows: 
 

 min ~ ; ~ , ~ ~d g H g t g+ = ∈T T
BG� �" #

�
Ω , (III.25) 

 

where 
�
H D H= + ~

 and 
~H D C DX= +−1 T  (section III.D). Notice that the lj-th entry of the latter matrix is 

a weighted average of x-values (formula (III.18) in section III.D). Still working under assumption (vi), 

we get a simple unweighted arithmetic average: 
~ ( )

( )h

x

n
xlj

kj
k s

l
l j

l= =∈
∑

. Therefore, the g-weights are 

g Fl l
T

( ) ( ) '= x λλλλ� � , where λλλλ '  is a new optimal m-vector of Lagrange multipliers, and 

x( ) ( ) ( ),...,l
T

l l mx x= 1� � . Hence the g-weights indeed vary across clusters, but not across elements within 

clusters. For estimation of totals of study variables y, we apply: 
 
• if y is a cluster-level variable: 

 

 � '( ) ( ) ( ) ( )t d g y d F yy l l l
l

L

l l
T

l
l

L

= =
= =
∑ ∑

1 1

x λλλλ� � , (III.26) 

 
• if y is an element-level variable: 

 

. � '( ) ( ) ( )

( ) ( )

t d g y d g y d F yy k k k
k s

k l k
k sl

L

l l
T

k
k sl

L

l l

= = =
�

�
��

�

	




∈ ∈= ∈=
∑ ∑∑ ∑∑

1 1

x λλλλ� � . (III.27) 
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Notice the similarity between (III.26) and (III.40), and between (III.27) and (III.24). Unfortunately, 
however, �t sz jj

≠  (j = 1, …, L). 

 
 
 
III.E.5 Integrated element-cluster-level calibration 

 
The disadvantage of the approaches in the previous sub-sections III.E.2-4 is that if calibration is on 
element-level auxiliary information only, then results are not necessarily numerically consistent at the 
cluster-level, while if calibration is on cluster-level auxiliary information only, then results are not 
necessarily numerically consistent at the element-level. It is however possible to achieve numerical 
consistency at the two levels simultaneously. 
 
Two-level numerical consistency can only be realised if the g-weights are constant within clusters. 
This implies that we have to combine the technique for calibration on cluster-level auxiliary 
information, as outlined in section III.E.3, with the clustering technique for calibration on element-
level auxiliary information, as outlined in section III.E.4. Combination of the two sets of calibration 

constraints is straightforward: we have to consider the system with sub-systems 
�
Z g sT ~ =  and 

�
H g tT ~ = . This we can write as 

�
V g uT ~ = , with 

� � �
V = Z H|� �  and u

s

t
=

�
��

�
	
 . Now, from section III.E.3, we 

have 
�
Z DZ= ~

, and therefore we also define H D H= −~ 1 � , such that 
�
H DH= ~

 and 
�
V DV= ~

, with 

V = Z H|� � . Notice that, from section III.E.4, H D H D D H D D D C DX D C DX= = = =− − + − + +− −~ ~ ~ ~ ~1 1 1 1 1� T T , 

i.e. H is simply the ( L m× )-matrix with entries h x n xlj kj
k s

l l j

l

= =
∈
∑

( )

( ) . The system of calibration 

equations can then be written equivalently as V Dg uT ~~ = , which makes the weights explicit, and 

which also indicates that the objective function to be used is 
~ ~d gTG� �  (as in section III.E.3, but not as 

in section III.E.4). The latter in fact means that the integrated element-cluster-level approach is 
essentially a cluster-level calibration, with individual calibration variables being summed within 
clusters. Thus, the final integrated element-cluster-level calibration problem is: 
 

 min
~ ~ ; ~ , ~ ~d g V g u gT T

BG� �" #
�

= ∈Ω . (III.28) 

 
Alternative formulations are: 
 

 min
~ ~ ; ~ , ~ ~d g

Z

H
g

s

t
gT

T

T BG	 

�

�
�
��
�
��

=
�
��
�
�� ∈

�
��
��

�
��
��

Ω , (III.29) 

 
and: 
 

 min
~ ~ ;

~~ , ~ ~d g
Z

H
Dg

s

t
gT

T

T BG	 
 ���
�
��

=
�
��
�
�� ∈

�
��
��

�
��
��

Ω . (III.30) 

 
The latter indicates clearly how the input files for our calibration software module will have to be 
constructed in practical applications. Notice that, if the constant variable x = 1 were one of the 
element-level calibration variables, then this variable would become a cluster-level calibration variable 
h, with values equal to the cluster sizes nl . 
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The resulting g-weights can now be written as: 
 

 

g F n

F

F

l l
T

l l
T

l
T

l
T

l
T

( ) ( )

,

= +

= +

=
�
��

�
	


�
��

�
	


z x

z h

v

γγγγ λλλλ

γγγγ λλλλ

γγγγ
λλλλ

∗∗∗∗ ∗∗∗∗

∗∗∗∗ ∗∗∗∗

∗∗∗∗

∗∗∗∗

� �

� �  (III.31) 

 

where γγγγ λλλλ∗∗∗∗ ∗∗∗∗ and  are new vectors of Lagrange multipliers, with length p and m, respectively. For 
estimation of totals of study variables y, we have: 
 
• if y is a cluster-level variable: 

 

 �
( ) ( ) ( )t d g y d F yy l l l

l

L

l l
T

l
T

l
l

L

= = +
= =
∑ ∑

1 1

z hγγγγ λλλλ∗∗∗∗ ∗∗∗∗� � , (III.32) 

 
• if y is an element-level variable: 

 

. �
( ) ( )

( ) ( )

t d g y d g y d F yy k k k
k s

k l k
k sl

L

l l
T

l
T

k
k sl

L

l l

= = = +
�

�
��

�

	




∈ ∈= ∈=
∑ ∑∑ ∑∑

1 1

z hγγγγ λλλλ∗∗∗∗ ∗∗∗∗� � . (III.33) 

 
The reader will compare these formulas with (III.26) and (III.23), and with (III.27) and (III.24), 
respectively. Remember that we now have complete numerical consistency: �t sz jj

=  (j = 1, …, L) and 

�t tx jj
=  (j = 1, …, m). 

 
 
 
III.E.6 Discussion 

 
In the previous sub-section we have described a technique for dealing with two levels of auxiliary 
information. The proposed method is a simultaneous calibration technique that is essentially a cluster-
level calibration method. In this study we will present – and briefly discuss – some preliminary results, 
from application of this technique to the Time Use Survey (1999) at Statistics Belgium (section 
V.D.2). Other surveys will be considered later for application of this technique. 
 
The technique of simultaneous calibration at several levels of auxiliary is not new, as the literature 
indicates. Moreover, in the literature on calibration, several alternative methods for dealing with 
auxiliary information that is available at two or more levels are presented. See for instance Sautory et 
al (1999), Mohadjer (1999), Hidiroglou and Särndal (1998), Dupont (1995), Kalton and Brick (1995), 
Lemaître and Dufour (1987), among others. Notice that these studies often treat the problem in the 
context of multi-phase sampling, which may lead to slightly different types of formulas for, for 
instance, the g-weights. In multi-phase sampling, it may seem more natural to calibrate step by step, 
each step corresponding to one of the phases in the sampling procedure and resulting into auxiliary 
information related to each phase, and sometimes be built up step by step. Cluster sampling is a 
particular case of two-phase sampling, as for instance Särndal et al (1992, p.344) point out. 
 
Those complex calibration methods are worth to be studied further at Statistics Belgium, both at a 
theoretical level for thorough understanding and at a more practical level, focussing on 
implementation of the techniques in different multi-phase or multi-stage sample surveys. Time should 
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be spent on comparison of several alternatives. The case of the LFS would be a useful starting point 
for an in-depth study, eventually resulting in a stable, but flexible, weighting scheme, that incorporates 
auxiliary information at two (or more?) levels simultaneously and therefore produces numerical 
consistency at several levels. 
 
This discussion has drawn our attention to a “small” problem, related to the clusters’ sampling weights 
(or initial weights) 

~d . If cluster-level auxiliary information is derived from element-level data, then a 
natural choice seems to be the sum of the element-level sampling weights. This implies an additional 
weighting factor in the objective function: larger households get a higher weight. If, on the other hand, 
cluster-level auxiliary information is directly observed for clusters as a whole, then it seems natural to 
use the clusters’ sampling weights, which implies that the size of the household is completely ignored. 
It would be interesting to study the effect of variability in cluster sizes on the estimated cluster-level g-
weights, and the resulting point and variance estimates for totals of study variables. 
 
To close this section, we summarise the results in the table on the next page. It may be noticed that 
application of the collapsing technique, as discussed in section III.C.2 could be considered in each of 
the four situations summarised in the table. Collapsing is useful for reduction of the size of the 
calibration problem, but otherwise doesn’t add anything new. Collapsing is particularly useful for 
calibration on qualitative variables, when it may be expected that a significant number of units 
(elements or clusters) have the same calibration vector, such that a significant reduction in the size of 
the problem can be realised. 
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Table 3.8  Overview of calibration models, if two levels of auxiliary information are available 
 

Level of auxiliary 
information used 

A priori 
restriction on 
g-weights – 
Special 
technique 

Auxiliary information 
(B : basic ;  
 D : derived) Calibration constraints g-Weights 

Numerical 
consistency 
�t tx jj

= ?  

Numerical 
consistency 
�t sz jj

= ? 

Element - X d t, ,   (B) 
�
X X tT Tg Dg= =  g Fk k

T= x λλλλ� �  Yes - 

Element 
g gk l= ( )  

Clustering 
~

, ,H d t+  (D) 
�
H g H D g tT T~ ~ ~= =+  g Fl l

T
( ) ( ) '= x λλλλ� �  Yes - 

Cluster - Z d s,
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III.F ESTIMATING POPULATION TOTALS OF SURVEY VARIABLES: DEALING WITH 
MISSING VALUES 

 

The basic formula for the calibration estimator of the total t y k
k U

y=
∈
∑  of a survey variable y is 

 

 �t w yy k k
k s

Tw y= =
∈
∑ , (III.34) 

 

where w = w wn
T

1,...,� �  is the vector of calibrated weights and y = y yn
T

1,...,	 
  is the vector of y-

values for the sample elements. So far we have assumed that the design matrix X is complete, and 
now, in order to have a workable formula (III.34), we must furthermore assume that the data matrix 

X y|� �  is complete, by which we mean that for all n sample elements values are available for all 

auxiliary x-variables and for the survey variable y. Obviously, the sample s might be the respondent 
sample. Thus we have covered so far the situation in which there is unit non-response only. Notice 
that the calibration technique is assumed to correct appropriately for unit non-response. 
 
In practice, the data matrix X y|� �  (for the respondent sample) often is incomplete (with the restriction, 

of course, that a row, or case, is never missing completely): we then talk about item non-response (in 
addition to unit non-response). One solution to the problem is to complete first the data matrix, and 
next to proceed as outlined so far. Filling in the gaps in the data matrix is called imputation, and the 
reader will know that there exists a large collection of methods for imputation, ranging from the 
simplest mean value imputation to the most sophisticated form of (model-based) regression 
imputation, or from simple ad hoc methods to ingenious statistical methods. 
 
We do not deal with imputation methods in this text for two reasons. Firstly, calibration theory 
basically ignores whether x-values are imputed or observed (or obtained from registers): among other 
things, the calculation of variances for calibration estimators needs some modification, taking into 
account the uncertainty in imputed x-values. Secondly, imputation should be another topic for 
investigation at the most general level at Statistics Belgium. Only then imputation and calibration 
should be combined to further improve in a synergistic way our survey estimates. 
 
Consequently the discussion in the present section is very pragmatic and merely aims to provide 
practical methods to deal with incomplete data matrices, e.g. caused by item non-response. 
 
We distinguish three situations of incompleteness. Table 3.9 presents these schematically; notice the 
distinction between m complete cases and n – m incomplete cases. 
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Table 3.9  Types of incomplete data matrices 
 

 Situation 1 Situation 2 Situation 3 
Case X y X y X y 

1 × × × × × × × × × × × × × × × × × × 
: 
: 

 : 
: 

 : 
: 

 : 
: 

k × × × × × × × × × × × × × × × × × × 
: 
: 

 : 
: 

 : 
: 

 : 
: 

m × × × × × × × × × × × × × × × × × × 
m+1 × × × × × ? × ? × × × × ? × ? × × × 

:  :  :  : 
n × × × × × ? × × ? × ? × × × ? × × ? 

 
 
The solution in each of these three situations is based on the procedures as discussed in the previous 
sections, occasionally followed by an additional correction. This correction can be such that for at 
least one of the calibration variables the calibration constraint is still satisfied. 
 
 
SITUATION 1  Complete X and incomplete y. 
 
Let sc  be the sub-sample of m complete cases. Then 
 

 �
�
~ *t

w

w
w y Ny w yy

k
k s

k
k s

k k
k s

s k k
k s

c

c

c

c

= = =∈

∈
∈ ∈

∑
∑ ∑ ∑ , (III.35) 

 

where �N wk
k s

=
∈
∑  is the calibration estimator of the population size N, ~y

w y

w
s

k k
k s

k
k s

c

c

c

= ∈

∈

∑
∑

 is a ratio 

estimator for the mean of the survey variable based on the sample sc  of complete cases, and 

w
N

w
wk

k
k s

k

c

*
�

=

∈
∑

 is an adjusted calibration weight. If the constant variable x = 1 is among the 

calibration variables, then �N N= . Then the estimator is sometimes called the expanded sample mean 
(Särndal et al, 1992, p.258) (strictly speaking only if the weights would be the sampling weights). 
Alternatively, one can use any other calibration variable x jo

, say, and the estimator would then be: 

 

 �t
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. (III.36) 

 
This is a ratio estimator for the total ty , based on the calibration variable x jo

 (Särndal et al, 1992, 

p.180) (strictly speaking only if the weights would be the sampling weights). 
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It is possible to extend these estimators so that more than one calibration variable is taken into account 
to make the adjustment. If these calibration variables are the indicator variables corresponding to the 
categories of some qualitative variable(s), than a regression type estimator as (7.6.1) in Särndal et al 
(1992) is obtained. 
 
 
SITUATION 2  Incomplete X and complete y. 
 
Here, calibration weights are calculated from the complete cases sample sc , and calibration weights 
are therefore available for the elements in this sample only. Henceforth, only the observed y-values for 
elements in sc  can be used: 
 

�t w yy k k
k sc

=
∈
∑ . 

 
I.e. the sample s is simple replaced by the sample sc . A drawback of this solution is that some 
observed values for the survey variable are not used. This can, strictly speaking, only be accepted if 
non-response is ignorable, i.e. the value of y does not depend on whether the x-values are observed or 
not. Otherwise some bias can be introduced. 
 
 
SITUATION 3  Incomplete X and incomplete y. 
 
This is similar to situation 2. 
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III.G VARIANCE ESTIMATION 

 
It is well known that if the linear calibration method is used, then the calibration estimator of totals of 
study variables y is a GREG (generalised regression) estimator. The formula for the asymptotic 
variance of the GREG estimator is not complicated, and an estimate is easily computed with the 
following formula (see Deville and Särndal, 1992): 
 

 �
�V t w e w ey

k l

kl
k k l l

l sk s

� � 	 
	 
= −
�
��

�
��∈∈

∑∑ 1
π π
π

, (III.37) 

 
where πk  ( k s∈ ) are the first order inclusion probabilities, πkl  ( k l s, ∈ ) are the second-order 

inclusion probabilities, wk  ( k s∈ ) are the calibrated weights, and ek  ( k s∈ ) are residuals, to be 
calculated from a sample-based weighted linear regression of y on the calibration variables. In matrix 
notation, this is written as: 
 

 �
�

� �V t y
T� � = e W We

�
∆∆∆∆ , (III.38) 

 

where 
�
∆∆∆∆ ==== 1−
�
��

�
��

π π
π
k l

kl

, W = diag wk� �  and e = e en
T

1,...,	 
 .  The residual vector e can be computed 

from the survey data as follows: 
 

 � �e y Xb y X X DX X Dy= − = −
−T T� � , (III.39) 

 

where �b X DX X Dy=
−T T� �  is an estimator for the vector of regression coefficients in the weighted 

linear regression of y on the calibration variables. Notice again the use of g-inverses. 
 
In calibration methodology, it is also proved (Deville and Särndal, 1992) that any calibration estimator 
�t y  is asymptotically equivalent with the GREG-estimator. Therefore, the variance of any calibration 

estimator �t y  can be estimated using the above formulae for estimating the variance of the GREG-

estimator, at least in large samples. 
 
This solves the basic problem of estimating the variance for calibration estimators for totals t y . A 

drawback of the method is that the second-order inclusion probabilities should be available and strictly 
positive. We are currently working on (approximate) mathematical models for describing the sampling 
design of complex surveys, such that second-order inclusion probabilities can be (approximately) 
calculated. 
 
It must be noticed that the above formulae for variance estimation need to be modified in case of 
(substantial) non-response, when the sample s is in fact the respondent sample. Calibration is still 
applied to adjust for non-response (see Dupont (1994), Skinner (1999), Lundstrom and Särndal 
(1999)). Variance estimation then becomes more difficult, but a complete discussion of it is beyond 
the scope of this text. 
 
Finally, we mention here a straightforward extension of the above formulae. Usually totals have to be 
estimated for several study variables. The vector y should then be replaced with a matrix Y, of 
dimension n p× , where p is the number of study variables involved. Hence the j-th column in Y 

corresponds to the j-th study variable. Accordingly, �t y  becomes a vector, �t y  say, of calibration 



  

 –  62  – 
   

 

estimates of totals, �b  becomes a matrix, �B  say, of estimates of regression coefficients, and �e  
becomes a matrix, �E  say, of residuals, where: 
 

 � �E Y XB Y X X DX X DY= − = −
−T T� � , (III.40) 

 
and, finally, 
 

 � � � �V y
Tt E W WE� � =

�
∆∆∆∆ , (III.41) 

 
is the estimated p p×  variance-covariance matrix for the vector �t y  of calibration estimators of the 

totals of the study variables. 
 
This extension is useful in practice, for several reasons. It shows how to deal with many survey 
variables at the same time. For instance, if the frequency distribution with respect to a qualitative 
variable has to be estimated, indicator variables have to be constructed, which then become the study 
variables, for which simultaneous estimation is possible, following the above formulae (III.40) and 
(III.41). The formulae are also useful with respect to implementation of (co-) variance estimation; see 
section IV.C.2.vii. 
 
Covariance estimates might also be useful, for instance, when ratios of estimates of totals are 
considered. This is an example of a complex statistic; variance estimation can be based on Taylor 
series expansion, which then involves estimates of both variances and co-variances. 
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IV.A SOME OTHER IMPLEMENTATIONS 

 
Before we start discussing our SPSS implementation g-CALIB-S, we briefly mention some other, 
similar systems, developed at other statistical institutes during the past decade. Two of them, GES and 
CALMAR, are SAS-based systems; the third one, BASCULA, is developed under Delphi. We do not 
intend to give a complete discussion of these software packages, firstly because our documentation 
about them is not complete, and secondly because we have no experience at all in running the 
programs in practical or hypothetical situations. Nevertheless, the next few sub-sections may give an 
indication of were our software can be placed in relation to those alternative tools. 
 
 
IV.A.1 SAS-based system GES (Statistics Canada) 

 
GES stands for Generalized Estimation System. According to Estevao et al (1995), GES is based on 
the generalised regression (GREG) estimation framework, developed by Särndal et al (1992). This 
framework covers a class of calibration estimators to which many commonly used estimators belong. 
However, the generalised calibration framework introduced by Deville and Särndal (1992) is larger. 
 
GES is accompanied with another SAS-based system, GSAM, the Generalised Sampling System. Both 
systems cover several simple and more complex sampling designs, which becomes important in 
variance estimation that is included in GES. The advantage of GES is thus the integration of 
calibration, estimation (for totals, means, ratios and proportions, for the entire population or for 
domains) and variance estimation, although only in the GREG framework. 
 
 
IV.A.2 Calibration in BASCULA (Statistics Netherlands) 

 
The new version of BASCULA is developed under Delphi for Windows 95 (Nieuwenbroek et al, 
1997). BASCULA, like GES, is based on the GREG estimation framework. Whether the software will 
also include weighting according to Deville and Särndal (1992), as announced in Nieuwenbroek 
(1997), is not clear. Variance estimation will be based on resampling techniques, in particular on 
balanced repeated sampling (BRR). As GES, BASCULA is thus another more complete system, 
integrating point estimation (and weighting) and variance estimation in one stand-alone package. 
 
An interesting peculiarity in BASCULA is the way that the g-weights are bounded in the linear 
method. Contrary to what is done in g-CALIB-S and in CALMAR, the g-weights are not truncated, 
but rather rescaled (in a fairly complex way); the procedure is iterative. This seems to be a smoother 
bounding technique than simple (iterative) truncation. It is worth to compare the methods, especially 
given our experience that convergence under the truncated liner method in g-CALIB-S may be more 
“difficult”; see section V.E.4 for an example. 
 
 
IV.A.3 The SAS module CALMAR (INSEE – France) 

 
The SAS-module CALMAR, for Calage sur Marges, is based on the generalised calibration 
framework introduced by Deville and Särndal (1992); see also Deville et al (1993) and Sautory 
(1993). Our tool g-CALIB-S is very close to CALMAR. They both concentrate on estimation of 
calibrated weights and g-weights. A central device in both packages is the distance function G. From a 
practical point of view, this is obviously very useful, since it allows the user to restrict the weights 
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flexibly in various ways. From a theoretical point of view it is interesting to notice that the generalised 
calibration framework is (much) larger than the GREG framework. 
 
CALMAR in some sense is better than our software g-CALIB-S, at least at present. CALMAR indeed 
is user-friendlier. This is mainly due to the fact that underlying quantitative and qualitative calibration 
variables are automatically transformed into an explicit design matrix in CALMAR. This largely 
reduces preparatory work on the data by the user her/himself. However, if several quantitative as well 
as qualitative variables are calibrated on, then the user of CALMAR still has to do the required 
transformations on his original data, in order to obtain a standard format for his input data. For 
instance, joint-effects for qualitative variables, or between a quantitative variable and one or more 
qualitative variables, have to be generated through one or more additional variables, which must be 
constructed by the user. Another point where CALMAR is scoring better than g-CALIB-S is error 
detection and reporting, definitely useful for the more application-oriented user. 
 
It can be argued however, that our software g-CALIB-S is potentially at least as powerful as 
CALMAR. This is a consequence of using g-inverse matrices. If some practical problems could be 
solved appropriately in g-CALIB-S, then this package will deliberately be very competitive too. Of 
course, the approach outlined in this study can probably easily be implemented in CALMAR. At first 
glance, looking quickly in the SAS/IML guide for matrix language, it is revealed that SAS has 
powerful built-in procedures, which are not available in SPSS. Anyway, the experienced statistician, 
with a little feeling for maths, should be able to use g-CALIB-S efficiently. The applications discussed 
in chapter 5 might illustrate this. The situation is comparable to a situation in regression modelling: 
users of GLIM (Francis, 1993) should understand very well the theoretical background of this 
package. Hence, people who like (statistical) puzzling a little bit, will like, and probably prefer, g-
CALIB-S. 
 
Despite its weaknesses, g-CALIB-S will soon become a universal tool at Statistics Belgium. This is 
because SPSS will stay the basic statistical package, at least for some years. CALMAR will be studied 
soon, and compared with g-CALIB-S, at the Department of Methodology and Co-ordination at 
Statistics Belgium, since the members of that department very recently obtained a license for SAS too. 
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IV.B SPSS IMPLEMENTATION G-CALIB-S 

 
IV.B.1 Introduction 

 
In chapter II we have formulated the generalised calibration problem as a mathematical programming 
problem, in terms of the calibrated weights w : 
 
 min , ; ,D T

Bd w X w t g� �� �= ∈Ω , (IV.1) 

 
or in terms of the g-weights g : 
 

 min ; ,d g Dg gT T
BG� �� �X t= ∈Ω . (IV.2) 

 

Recall that ΩB , if explicitly specified, takes the form L U
n

, , with 0 ≤ ≤L U  (and, often, 

1n
nL U∈ , , i.e. L U≤ ≤1 ; see section III.A.2). Written as in (IV.2), it becomes immediately clear 

which are the major data input for our calibration software: the design matrix X, the initial weight 
vector d, and the calibration totals vector t; apart from this, the distance function G, and, occasionally, 
the lower bound L and the upper bound U for the g-weights have to be specified. 
 
In section IV.B.2 we describe the core module g-CALIB-S.sps, for which the above-mentioned data 
are the main input. All input is defined through program parameters. There are some other parameters 
than those mentioned here before, to be set by the user before running the program. These are, for 
instance, the tolerance ε in the convergence criterion and the maximum number of iterations. In the 
same section we also discuss the features of g-CALIB-S, such as its output and requirements for 
adequate functioning of the software. Notice the subtle difference between g-CALIB-S.sps and g-
CALIB-S, which may both be called “the core module”. The latter refers to the set of syntax files g-
PREPARE.sps (see hereafter) and g-CALIB-S.sps. It should be clear from the context, and from 
inclusion or exclusion of the suffix “.sps”, about which of the two we are talking. 
 
Never, in practice, the design matrix is presented as such, but has to be constructed from basic data 
files (or databases). The form of X depends on the (set of) calibration model(s) the statistician wants to 
apply, searching for an appropriate weighting scheme. In section IV.B.3 it is discussed in what form 
the design matrix should be available for being read, as input, by the core module g-CALIB-S. In 
section IV.B.6 we discuss SPSS macros, which we have developed for constructing the design matrix. 
Those macros are stored in the SPSS syntax file g-DESIGN.sps. It has to be noticed that it is up to the 
user to prepare the data for g-CALIB-S. The macros are meant to facilitate that process; we will 
illustrate this extensively in chapter V. SPSS matrix functions are called from the macros, and calling 
one of these macros is a syntax command too, so the user should be familiar with the basics of matrix 
language and macro facilities in SPSS. Matrix language is just an extension of basic syntax language. 
Of course, input files for g-CALIB-S could also be prepared by using other software, e.g. spreadsheet 
software like Microsoft Excel, but the data construction process must always end with the creation of 
two input files for g-CALIB-S, which are in SPSS data file format. 
 
Section IV.B.4 discusses a small auxiliary module g-PREPARE.sps, to be run just before g-CALIB-
S.sps is run. This module merely performs some preparatory data manipulations that are related to the 
way the software deals with calibration strata (see section III.A.1). In the future, we might consider 
further developments of g-CALIB-S. Some of these could be included in the module g-PREPARE.sps, 
as pointed out in section IV.C.2. 
 
In section IV.B.5 we present a rudimentary interface for the core module g-CALIB-S. This interface is 
merely a SPSS Production Facility job, by means of which it becomes easy for the user to specify 
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values for the input parameters for g-CALIB-S. It also allows storing default values for the program 
parameters. Different jobs, possibly with the same data input files, but with different sets of values for 
other program parameters, can easily be stored. 
 
 
 
IV.B.2 The core module g-CALIB-S.sps 

 
IV.B.2.i Motivation 
 
The heart of our SPSS software for generalised calibration is the implementation of the iterative 
algorithm for calculation of the g-weights g; see section II.D for the Basic Algorithm and section 
II.E.5 for the Extended Algorithm. The SPSS syntax is stored in the file g-CALIB-S.sps. 
 
We have built this module with three objectives in mind: (1°) it should be as general as possible, (2°) 
it should be easy to use, and (3°) it should be well-structured, to facilitate possible extension. 
Generality should imply flexibility, in the sense that many different calibration techniques, from 
traditional post-stratification methods to the most sophisticated extrapolation methods, could all be 
handled in a similar way and with the same tool. This should encourage the statistician to explore 
alternative extrapolation techniques for the survey for which s/he is responsible. I’m strongly 
convinced of the fact that a general, unifying framework makes statistical methodology more 
transparent for the practitioner, and that it creates an environment for more efficient communication 
between applied statisticians, who might, at first sight, seem to do different things, but after all just 
apply special variants within the same general framework. Variations on the same theme! Thus, 
working within a uniform framework, it might be easier to understand what others are doing, and 
thereof to learn from each other. Generalised calibration methodology provides the unifying 
theoretical framework; g-CALIB-S is intended be a tool that completely reflects all features of the 
theory. We believe that our software already reaches this objective to a large extent. 
 
We, methodologists at Statistics Belgium, have chosen to use SPSS for implementation of generalised 
calibration techniques. Or, more correctly, we barely had a choice, and just started using SPSS as an 
environment for implementation of calibration methodology. I think this has not at all been a bad 
choice, since from now on our statisticians are offered a uniform framework and a general tool for 
doing their job. Because of the simple fact that many statisticians were already SPSS users, it seemed 
logical to develop more advanced methodology in the same statistical package. By the way, SPSS only 
a few years ago became the general statistical tool at Statistics Belgium, just a few months before the 
author of this text has joined the institute mid 1997. It might have been unrealistic, and practically 
impossible, to switch to another statistical package for general use, with the mere purpose of being 
able, from thereof, to buy specialised software modules for calibration, variance estimation, etc. 
 
One of our objectives, the second one mentioned here above, i.e. that the software must deliberately be 
easy to use, has been achieved by parameterising the computer program. This has been realised by 
using the macro facilities in SPSS. We discuss these parameters at length here below. This section 
IV.B.2 will close with a discussion of informative output (details about the iterative process, and 
summary statistics) produced by g-CALIB-S, and of the output file (a SPSS data file) that contains the 
g-weights and calibrated weights (among some other estimated statistics). 
 
Finally, the reader might already have understood why our software has been called g-CALIB-S. 
“CALIB”, of course, stands for “calibration”. The meaning of “g-“ is twofold: it stands for 
“generalised” in “generalised calibration”, but at the same time also refers to the (extensive) use of 
“generalised” or “g-inverse matrices”. Finally, “-S” refers to “calibration strata”, and the way these 
can be dealt with in g-CALIB-S. 
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IV.B.2.ii Parameters in g-CALIB-S 
 
A parameter in a SPSS syntax program is in fact a SPSS macro. A macro has a name, e.g. 
@MyMacro, and some contents, called the macro body. The latter can be either a collection of 
commands (SPSS syntax commands, in our application) or a string (enclosed or not between quotes); 
the latter will be called text macros. If @MyMacro is a text macro, and if the SPSS syntax interpreter 
detects, somewhere in a syntax program, the expression @MyMacro, then the contents of @MyMacro 
are substituted and the SPSS processor continues running (i.e. executing) the syntax program. The 
occurrence of @MyMacro, i.e. a macro name, in a syntax program is a macro call. In this section, we 
need to understand only the use of text macros; some useful command macros are discussed in section 
IV.B.6. 
 
From now on, we will not distinguish between macro names (@MyMacro) and parameters for g-
CALIB-S. Thus we speak simply of “parameters”. Macro names used as parameters in our calibration 
modules, are starting with the special character @. This is customary when macros are used in syntax 
files: the purpose is to distinguish macro names from user-defined variable names, command 
keywords, or other identifiers. Other special characters may be used, e.g. the exclamation mark (!), as 
mentioned in the SPSS Syntax Guide. 
 
g-CALIB-S works with 13 parameters. A shortlist is in the table below.  
 
 

Table 4.1  List of parameters used by g-CALIB-S, with short description 
 

Parameter 
(@macro name) 

Description 

@WORKDIR The path defining the location of the input data files @XDATA 
and @CALTOT; also the path for locating output files and 
temporary files 

@XDATA The name of the SPSS input data file containing the survey data 
@CALTOT The name of the SPSS input data file containing the calibration 

totals 
@XVARS A SPSS variable list, defining the names of calibration 

variables in the files @XDATA and @CALTOT, and used in 
the current run 

@STR_1 The number of the first calibration stratum to be processed in 
the current run 

@STR_N The number of the last calibration stratum to be processed in 
the current run 

@TYPE The calibration method, i.e. the distance function G 
@SCALE A fixed value for the scale parameter φ , if positive, or 0 or a 

negative value to ask the program to calculate φ  

@L A fixed lower bound L for the g-weights 
@U A fixed upper bound U for the g-weights 
@TOL The tolerance ε in the convergence criterion 
@ITERMAX The maximum number of iterations 
@INFO A parameter to specify whether more detailed intermediate 

results have to be included in the informative output 
 
 
We know discuss each of these parameters in detail. 
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@WORKDIR The path defining the location of the input data files @XDATA and 
@CALTOT; also the path for locating output files and temporary files 

 
This parameter is a string, defining the path for locating the input data files for g-CALIB-S. It should 
include the drive letter, and a complete directory structure. The general format is  
 

<Drive>:\[<directory>\[<subdirectory>\[<subdirectory>\[…]]]] 
 
Notice that the last character in this string must always be a backslash (\). <Drive>, <directory> and 
<subdirectory> must be valid user-defined names, obeying general Windows rules. 
 
Example: C:\My Documents\SurveyX\Calibration2001\ 
 
The output file (containing g-weights, calibrated weights, etc) is stored in the same directory; see 
below for more details about this file. 
 
The parameter @WORKDIR is case insensitive. 
 
 

@XDATA The name of the SPSS input data file containing the survey data 

 
This string parameter sets the name for the (a priori constructed) survey data input file, which 
contains, among other things, the design matrix and the initial weights. A complete description of 
contents and structure of the survey data file is postponed to section IV.B.3. The general format of this 
name is 
 

<Filename>[.sav] 
 
<Filename> must be a valid filename; the extension .sav is optional or can be replaced by any other 
extension. However, the survey data input file must be a SPSS data file. 
 
The parameter @XDATA is case insensitive. 
 
 

@CALTOT The name of the SPSS input data file containing the calibration totals 

 
This string parameter sets the name for the (a priori constructed) calibration totals input file, which 
contains, among other things, the calibration totals for each calibration stratum. A complete 
description of contents and structure of the calibration totals file is postponed to section IV.B.3. The 
general format of this name is 
 

<Filename>[.sav] 
 
<Filename> must be a valid filename; the extension .sav is optional or can be replaced by any other 
extension. However, the calibration totals input file must be a SPSS data file. 
 
The parameter @CALTOT is case insensitive. 
 



  

 –  71  – 

 

@XVARS A SPSS variable list, defining the names of calibration variables in the files 
@XDATA and @CALTOT, and used in the current run 

 
This string parameter defines a list of variable names, which g-CALIB-S will try to find in both the 
survey data file and the calibration totals file. We refer to the SPSS Reference Guide for details about 
valid variable names in SPSS. Variable lists can be defined by using comma’s or blanks to separate 
variable names, and the keyword “TO” to intrinsically specify a collection of consecutive variables in 
the working data file. 
 
Example: X0, A1, A2, A3, B1, B2, AB11, AB12, AB21, AB22, AB31, AB32 
and X0, A1 to A3, B1, B2, AB11 to AB32 
and X0  to AB32 
 
are equivalent variable lists, provided that no other variables are occurring in the input files between 
the variable X0 and AB32. The is still some flexibility in the ordering of the variables in the input 
files. For example, B1 and B2  might occur before A1, A2 and A3. 
 
The @XVARS parameter is case insensitive. 
 
 

@STR_1 The number of the first calibration stratum to be processed in the current run 

 
This numeric parameter gives the number of the first calibration stratum to which the calibration 
model, defined through other parameters, will be applied. Notice that the calibration strata are 
numbered, using integers (1, 2, …); the numbering of calibration strata is stored in the variable 
STRATUM, which must be present in both the survey data file and the calibration totals file. See 
section IV.B.3 for details. The parameter has free format. 
 
 

@STR_N The number of the last calibration stratum to be processed in the current run 

 
This numeric parameter gives the number of the last calibration stratum to which the calibration 
model, defined through other parameters, will be applied. Notice that the calibration strata are 
numbered, using integers (1, 2, …); the numbering of calibration strata is stored in the variable 
STRATUM, which must be present in both the survey data file and the calibration totals file. See 
section IV.B.3 for details. The parameter has free format. 
 
If the parameters @STR_1 and @STR_N contain the same stratum number, then only that stratum is 
processed. If the value set through @STR_N is less than the value set through @STR_1, then only the 
stratum with number @STR_1 is processed. 
 
 

@TYPE The calibration method, i.e. the distance function G 

 
This numerical parameter sets the calibration method, i.e. the distance function G or the calibration 
function F. Four methods are implemented in our software; the corresponding values for @TYPE are: 
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1 if the linear method is applied; 
2 if the multiplicative or exponential method is applied; 
3 if the truncated linear method is applied; 
4 if the logit method is applied. 

 
If the user-specified value is not 1, 2, 3 or 4 then the value is reset to 1, the linear method is applied, 
and a warning message is included in the informative output. The parameter has free format. 
 
 

@SCALE A fixed value for the scale parameter φ , if positive, or 0 or a negative value to 
ask the program to calculate φ  

 
If a strictly positive value is set for this numerical parameter, then the scale parameter φ  takes this 
fixed value for each calibration stratum. If zero or a negative value is given, then this value is ignored, 
and φ  is calculated for each calibration stratum separately when the data for the stratum are 
processed. Notice that setting @SCALE equal to 1 is equivalent to no a priori supplementary global 
adjustment to the initial weights. The resulting value of the scale parameter, if calculated by the 
program, is linked to the first calibration variable in the variable list defined through the parameter 
@XVARS; see section III.A.2 for details. The parameter has free format. 
 
 

@L A fixed lower bound L for the g-weights 

 
This numerical parameter is the value of the user-specified lower bound L for the g-weights. The value 
is ignored in the linear and in the exponential method. Notice that, for some values of L, the 
calibration problem might be infeasible. The user should take care when s/he specifies @L; see section 
II.C for details. The parameter has free format. 
 
 

@U A fixed upper bound U for the g-weights 

 
This numerical parameter is the value of the user-specified upper bound U for the g-weights. The 
value is ignored in the linear and in the exponential method. Notice that, for some values of U, the 
calibration problem might be infeasible. The user should take care when s/he specifies @U; see 
section II.C for details. The parameter has free format. 
 
 

@TOL The tolerance ε in the convergence criterion 

 
This numerical parameter defines the tolerance level ε in the convergence criterion. Notice that the 
convergence criterion implemented in the current version of g-CALIB-S is based on the maximum 
change in the g-weights in successive iterations; see sections II.D and II.E.5. Iteration stops if the 
tolerance level is not exceeded anymore, or if the maximum number of iterations (set through 
@ITERMAX, discussed hereafter) is reached, whichever occurs first. 
 
The tolerance level has no effect for the linear method. The parameter has free format. 
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If the method chosen is not the linear one, but one of the three iterative methods, and if the user 
erroneously has given a zero or negative value for @TOL, then the program automatically resets 
@TOL to the default value 10-5 and a warning message is included in the informative output. 

 
 

@ITERMAX The maximum number of iterations 

 
This numerical parameter sets the maximum number of iterations. Iteration stops when the maximum 
number of iterations is exceeded, or if the tolerance level (set through @TOL, as discussed above) is 
not exceeded anymore, whichever occurs first. The maximum number of iterations has no effect for 
the linear method. The parameter has free format. 
 
If the method chosen is not the linear one, but one of the three iterative methods, and if the user 
erroneously has set @ITERMAX to zero or a negative value, then the program automatically resets 
the value to 100 and a warning message is included in the informative output. 

 
 

@INFO A parameter to specify whether more detailed intermediate results have to be 
included in the informative output 

 
This string parameter specifies whether or not informative output, which always includes some basic 
information about the iteration process and summary statistics at the end of the iterations, is extended 
with more detailed results of intermediate calculations. Such supplementary output is produced if the 
value of @INFO is set to Y (or y); otherwise only the standard informative output is provided. The 
user must be aware that the output can then be extremely long, since some output is at the level of the 
observations. It is recommended to use this feature only when a previous run of the module was not 
completed successfully, and when the user tries to locate where the program has failed. 
 
This parameter @INFO is case insensitive. 
 
 
IV.B.2.iii The SPSS output data file WEIGHTS.sav 
 
A SPSS data file is created at the end of execution of the syntax program g-CALIB-S.sps. The name of 
this file is invariably WEIGHTS.sav, and it is stored in the working directory specified through the 
parameter @WORKDIR, which also contains the survey data file (defined through @XDATA) and 
the calibration totals file (defined through @CALTOT). The variables stored in the file WEIGHTS.sav 
are: 
 
� CASE : an identification of the cases, which is a copy of the variable CASE in the survey 

data input file (see section IV.B.3). 
� STRATUM : a numbering of the calibration strata; values should be 1, 2, …, which also is a 

copy of the variable STRATUM in the survey data input file (see section IV.B.3). 
� SCALE : a variable containing the value(s) of the scale parameter φ . This value is constant 

within calibration strata, but may vary across calibration strata. A global positive 
value is set by the user (through the parameter @SCALE), or a calibration 
stratum-specific value is calculated by the program (see section III.A.2 and 
@SCALE in section IV.B.2.ii). 

� SCAWEI : the values of the so-called scaled weights (see section III.A.2). These are the 
initial weights dk  multiplied with the scale parameter for the calibration stratum 
to which case k belongs. The scaled weights are the new initial weights in the 
calibration problem. 
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� CALWEI : the values of the final calibrated weights wk  (if the iteration process has 
converged). 

� G_WEIG : the values of the g-weights gk . This is the ratio between the calibrated weights 
(in CALWEI) and the scaled weights (i.e. the new initial weights, stored in 
SCAWEI). 

 
The g-weights with respect to the initial weights dk  can be found by multiplying the variable 

G_WEIG with the variable SCALE. Notice that the initial weights dk  are not stored in the output data 
file WEIGHTS.sav. However, since the case identification variable CASE is present (with the same 
name) in the survey data file too, the two files can be merged, so that input and output values for each 
case are matched. Both the survey data input file @XDATA and the output file WEIGHTS.sav are 
sorted by STRATUM and CASE at the end of running g-CALIB-S, in order to facilitate merging of 
these files. Then, an alternative way to find the g-weights w.r.t. the initial weights dk  is to divide the 
variable CALWEI (which comes from the output file) by the variable WEIGHT (which comes from 
the input file). Recall that the calibrated weights are not affected by the value of the scale parameter 
(see section III.A.2). 
 
The user has to merge the files him/herself. Ones this is done, s/he can explore the results more in-
depth by using the appropriate SPSS syntax or menu commands, or a specific syntax program may be 
constructed to present the results in an appropriate format. For an illustrative example, see section 
V.F.4. The module g-CALIB-S however produces some summary statistics automatically. This is 
discussed in the next sub-section. 
 
 
IV.B.2.iv Informative output 
 
By informative output we mean some crucial non-statistical information about each step in the 
iterative procedure, more statistical information on the calibration variables at the end of the procedure 
(ideally when convergence is attained), and some tables and box plots presenting summary statistics 
on the scaled, the calibrated and the g-weights. These summary measures are calculated for each 
calibration stratum separately. Informative output is stored in a SPSS Viewer file (with extension 
.spo). The name of this file is the same as that for the SPSS Production Facility job-file, with extension 
.spp; see section IV.B.5. 
 
Non-statistical information as well as statistical information may help to evaluate the validity of the 
results, and to detect possible problems caused by badly specified data (in the two input files). Useful 
features are, for instance: 
 
� A measure for the relative change in the g-weights in successive iterations. It is this relative 

change that has to be smaller than the tolerance level ε, for “numerical” convergence. 
� The number of negative current estimates of the g-weights (or calibrated weights) in each of the 

iterations. 
� The various substitutes for the calibration totals for each calibration variable, including the 

calibration totals themselves (column labelled “Fixed”) and the calibrated estimates of these totals 
(column labelled “CAL_est”), which should, at convergence, be the same. Totals labelled 
“INI_est” are calculated using the initial weights in the survey data input file; totals labelled 
“SCA_est” are calculated using the scaled (initial) weights. 

� A relative difference between the fixed calibration total and the final calibrated total is calculated 
for each calibration variable, and presented in the column labelled “% DIFF”. At convergence 
this relative difference must be near zero for each calibration variable. If these values are non-
zero, then the iterative procedure might not have been converged (yet), or there may be problems 
with the data. Among these possible problems we might have numerical inconsistency for the 
calibration totals, or a calibration variable with zero values only (within a specific calibration 
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stratum) in the survey data file, while a non-zero calibration total is stored in the calibration totals 
file. The present version of g-CALIB-S does not detect such problems at the start of running the 
program; care from the user who constructs the input files can however avoid easily this kind of 
problems. Nevertheless, we intend to include more problem checking in new releases of g-
CALIB-S. 

 
At the end of the iterative procedure, statistical information on the scaled weights, the calibrated 
weights and the g-weights includes, for each calibration stratum separately:  
 
� The minimum, mean, median and maximum, the standard deviation and the sum, and the 5th, 25th, 

75th and 95th percentiles. The sum of calibrated weights is of particular interest: it is the estimated 
number of cases in the population in a given calibration stratum. It is equal to a fixed calibration 
total if a constant calibration variable (with values all equal to 1) is included in the survey data 
input file. 

� Box plots showing the distribution of the scaled weights, the calibrated weights and the g-weights 
in each calibration stratum. 

 
Finally, SPSS users know that through the menu Edit–Options in SPSS windows one can specify 
which other output can be included in the Viewer output file. For instance, it may be useful to have all 
commands in that file (the “log”), or warning messages, etc. Such additional output may be helpful to 
find out where things went wrong in case of program failure. For more details, the user is referred to 
the SPSS User’s Guide. 
 
In chapter V, output files in the context of several case studies will be discussed. Some complete 
output files will also be reproduced for illustrative purposes in the Appendices. 
 
 
 
IV.B.3 Input files for g-CALIB-S 

 
g-CALIB-S needs two input files, referred to by their equivalent parameter names @XVARS and 
@CALTOT hereafter (see section IV.B.2.ii). We here discuss the contents and structure of these files; 
in section IV.B.6 we discuss their construction from basic data files, using some macros developed 
especially for that purpose. 
 
Given the calibration problem (IV.2), it will be obvious that the design matrix X and the weight vector 
d, i.e. the survey data, are stored in the survey data file @XDATA, and that the calibration totals t are 
to be stored in the calibration totals file @CALTOT. Some rules should be strictly followed, as 
explained hereafter. 
 
The survey data file @XDATA must include three variables with fixed names. These are: 
 
� CASE : a unique identification of the cases. As explained in section IV.B.2.iii, this 

variable will be copied to the output file WEIGHTS.sav. 
� STRATUM : a numbering of the calibration strata; values should be 1, 2, …. This variable too 

is copied to the output file WEIGHTS.sav (section IV.B.2.iii). 
� WEIGHT : the variable containing the initial weight vector d. 

 
Apart from these three variables, variables with user-specified names will hold the columns of the 
design matrix X. No specific restrictions apply to these variables, but some recommendations could be 
taken into account. Variables (or columns in X) corresponding to the same term in a calibration model 
formula, as explained in section III.A.1, should be kept together in @XDATA. This is useful since 
these variables always need to be used together, in any possible calibration model. It will then reduce 
the length of the list of variables @XVARS. For the same reason, it is also convenient to keep all 
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calibration variables together, i.e. not to mix up these variables with the variables CASE, STRATUM 
and WEIGHT, or with any other set of variables that is stored in @XDATA. The latter variables can 
be original variables, such as qualitative variables, which are to be transformed into a set of indicator 
variables (with values 0 and 1) before they can be used as calibration variables. Other (original) 
variables that could be stored are variables holding an alternative series of initial weights, or an 
alternative calibration stratum specification. 
 
There is one important restriction on the variables’ values: STRATUM, WEIGHT, and the calibration 
variables should have real values only. Otherwise, the program will fail. Moreover, there should be no 
missing values in these variables. The occurrence of missing values in any of these variables will 
cause failure of g-CALIB-S. The user should eliminate cases with missing values in these variables 
before running the program. (I.e. item non-response must be treated as unit non-response.) 
 
To illustrate this, consider a calibration problem with model formula A*B = 1 + A + B + A.B, where A 
and B are qualitative variables with 2 and 3 categories respectively. Suppose that the user has 
constructed variables X0 (identically 1), A1 and A2, B1, B2 and B3, and AB11, AB12, AB13, AB21, 
AB22 and AB23, then the structure of the file @XDATA will be, for instance: 
 
 CASE STRATUM WEIGHT X0 A1 A2 B1 B2 B3 AB11 AB12 AB13 AB21 AB22 AB23 
 
possibly followed (or preceded, or …) by other variables (from the basic data file, and prepared for 
possible use later on). The following variable lists @XVARS, for instance, are then possible: 
 
� X0, A1, A2, B1 to B3, AB11 to AB23  for the model 1 + A + B + A.B = A*B 
� X0, A1, A2     for the model 1 + A = A 
� B1 to B3      for the model 1 + B = B 
� AB11 to AB23     again for the model A*B 
� etc 
 
It can be noticed that the names of the calibration variables in the file @XDATA are arbitrary, 
provided the usual SPSS rules are satisfied. Names should be chosen with care, such that model 
specification and interpretation of results is not too much complicated. (Once a data file is constructed 
the user can complete the data dictionary of the input files.) 
 
The second input file, @CALTOT, must have a similar structure as @XDATA. Of course, variables 
CASE and WEIGHT do not appear in this file. STRATUM and all user-specified variables will be 
present, and the calibration variables should appear in the same order as they appear in @XDATA. No 
other variables need to be included, although the user can add some. Hence the structure 
corresponding to the model formula A*B could (for instance) be: 
 
 STRATUM X0 A1 A2 B1 B2 B3 AB11 AB12 AB13 AB21 AB22 AB23 
 
Each row in @CALTOT corresponds to a particular calibration stratum, and contains the calibration 
totals for all the variables for that stratum. Each row thus contains a stratum-specific vector t. In the 
same way, all rows in @XDATA that correspond to cases in the same stratum, do contain a stratum-
specific design matrix X. Notice that the numbers of rows in each of these matrices are generally 
different, but corresponding columns are representing the same calibration variable. 
 
All this explains how data for different strata can be separated from each other, and therefore also be 
treated separately. 
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IV.B.4 The auxiliary module g-PREPARE.sps 

 
A small auxiliary syntax module g-PREPARE.sps has to be run before the core module g-CALIB-
S.sps is executed. Notice that together, g-PREPARE.sps and g-CALIB-S.sps are constituting the 
calibration software g-CALIB-S. 
 
The module g-PREPARE.sps merely performs some final preparation on the two input files 
@XDATA and @CALTOT. The main functionality of g-PREPARE is to sort the files by STRATUM. 
It further counts the number of cases in each stratum (in @XDATA) and computes the record numbers 
of the first and last case in each stratum in the sorted @XDATA. This information is temporarily 
stored in @CALTOT. The module g-CALIB-S.sps itself will remove this information after estimating 
the g-weights for each stratum. If the program fails, it usually doesn’t reach the point where that 
information is removed. Then the user might have to remove it manually from @CALTOT. However, 
the presence of that information in @CALTOT at the start of a session should not cause problems, as 
long as the number of cases per stratum in @XDATA doesn’t change. 
 
 
 
IV.B.5 The interface: a SPSS Production Facility job 

 
We have used SPSS Production Facility, delivered together with SPSS Base, to create an interface to 
the calibration software g-CALIB-S. The start-up screen of such a job is shown here below. The name 
of the job-file (with extension .spp) is free; here it is called g_ANJA.spp. 
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The Syntax Files box shows that two syntax files are called: g-PREPARE.sps and g-CALIB-S.sps (the 
order is important!). Other syntax files (constructed by the user) may be added either before, to 
prepare the data, or after, to manipulate the results. The Comments box is useful to put information 
about the job, e.g. generalities about the calibration model or the data being used. In the Folder for 
Output box, the user can specify where the program has to store the Viewer output file (.spo), and 
occasionally other output files that are specified through the Export Options… button (see later). 
Notice that the folder specified in the Folder for Output box is not the folder where g-CALIB-S will 
store the output file WEIGHTS.sav. 
 
Recall that g-CALIB-S (i.e. g-PREPARE.sps and g-CALIB-S.sps) is fully parameterised (section 
IV.B.2.i). SPSS Production Facility translates each parameter, @PAR say, into a text macro named 
@PAR. These macros are stored in the temporary file SPSSProd.spp, which is stored in SPSS’s 
general folder for temporary files (e.g. C:\windows\temp), and which is automatically “included” 
before g-PREPARE.sps and g-CALIB-S.sps are “included”. Notice that, if the user intends to insert 
his own syntax files through the Syntax Files box, these syntax files then have to be constructed 
according to the general SPSS rules for include files (see SPSS Base User’s Guide). An advantage of 
including user-constructed files in the same job, is that the same parameters (@WORKDIR, 
@XDATA, …) then can be used in the user-constructed syntax files. This allows flexible extension of 
the basic calibration software with other modules, for instance for estimation of totals of study 
variables. 
 
Clicking on the User Prompts… button opens the User Prompts window (not shown here). The user 
should open this window only if standard or default settings for the program parameters (starting with 
@) have to be changed. So we recommend that the user of g-CALIB-S only changes the entries of the 
column Default, if necessary. The other columns should only be used by the developer of the interface, 
and the software behind. 
 
After modifying the contents of the start-up screen, the user can save these changes (and rename the 
job file) if s/he wishes. Next the Run button (�) can be clicked to start running the job. Then the user 
is presented the User Prompts for <jobname.spp> window, where s/he can finally set the appropriate 
values for the parameters, as explained in section IV.B.2.ii. An example of this window is shown 
below. 
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(Notice the rather bad quality of the prompts: the second line is not shown completely, which is due to 
SPSS, and not to the developers of g-CALIB-S; one-line prompts would be better, and the user 
actually can change the prompts, once s/he understands how the software works.) When all parameter 
values are set, the OK button is clicked and SPSS then starts running the job. 
 
By default, a job is running in background. However, through the Edit-Options menu in SPSS 
Production Facility, the user can ask SPSS being shown up while running the job. For this and more 
functionalities of Production jobs, the user is again referred to the SPSS User’s Guide. 
 
One more feature is worth mentioning here. Clicking the Export Options… button in the start-up 
screen allows to specify that output is also stored in, for instance, a HTML file, which will be saved in 
the folder specified through the Folder for Output box in the start-up screen. We recommend using this 
feature, since the HTML file is numbering the syntax commands, which makes it easier to detect 
where exactly the program has gone wrong, in case of failure. Notice that error messages usually 
include a command line number. 
 
 
 
IV.B.6 The auxiliary module g-DESIGN.sps 

 
In the syntax file g-DESIGN.sps we simply have stored some macros that may help the user to 
construct the design matrix in a given calibration problem. These macros are: 
 

�DesC1  to create an indicator variable matrix for 1 qualitative calibration variable A, 
i.e. that part of a design matrix X that corresponds to the term A in a 
calibration model formula (section III.A.1); 

�DesC2 to create an indicator variable matrix for 2 qualitative calibration variables A 
and B, i.e. that part of a design matrix X that corresponds to the term A.B in a 
calibration model formula; 

�DesC3 to create an indicator variable matrix for 3 qualitative calibration variables A, 
B and C, i.e. that part of a design matrix X that corresponds to the term A.B.C 
in a calibration model formula; 
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�DesC1Z to create an interaction matrix for 1 qualitative calibration variable A and 1 
quantitative calibration variable Z, i.e. that part of a design matrix X that 
corresponds to the term A.Z in a calibration model formula; 

�DesC2Z to create an interaction matrix for 2 qualitative calibration variables A and B, 
and 1 quantitative calibration variable Z, i.e. that part of a design matrix X that 
corresponds to the term A.B.Z in a calibration model formula; 

�DesC3Z to create an interaction matrix for 3 qualitative calibration variables A, B and 
C, and 1 quantitative calibration variable Z, i.e. that part of a design matrix X 
that corresponds to the term A. B. C.Z in a calibration model formula. 

 
Hence, up to third-order interaction effects can be included in the calibration models, if the design 
matrix construction is only based on our 6 macros. It would not be difficult to write new macros for 
higher-order interaction effects, but before doing this, I intend to rewrite the macros, in order to avoid 
duplication of calculations. At present, the user should construct higher-order terms her/himself. 
Notice that the macros in g-DESIGN.sps are not used by the software g-CALIB (i.e. g-PREPARE.sps 
and g-CALIB-S.sps). Notice that the macro names do not start with a special character (such as @ for 
the macros discussed in section IV.B.2.ii). Therefore, the user should not use the macro names for 
other identifiers (variables), when using the macros. 
 
All 6 macros are functioning with input and output arguments. The syntax is as follows: 
 

DesC1  var=varname des=matname lab=vecname 
DesC2  var1=varname1 var2=varname2 des= matname lab=matname2 p=num 
DesC3  var1=varname1 var2=varname2 var3=varname3 des= matname lab= vecname 

p=num 
DesC1Z  var=varname zet=quantnam des= matname lab= vecname 
DesC2Z  var1=varname1 var2=varname2 zet=quantnam des= matname lab= vecname p=num 
DesC3Z  var1=varname1 var2=varname2 var3=varname3 zet=quantnam des= matname lab= 

vecname p=num 
 
The input arguments are var, var1, var2, var3, zet and p; output parameters are des and lab. Varname, 
varname1, varname2 and varname3 are user-specified names of qualitative calibration variables (A, B, 
…), quantnam is a user-specified name of a quantitative calibration variable (Z), matname is a user-
specified name of a matrix that will contain, at exit of the macro, the constructed part of the design 
matrix; vecname is a user-specified name of a row vector that will contain, at exit of the macro, a set 
of constructed numeric labels for the columns in the matrix matname. Num should be set such that the 

computed labels are meaningful; i.e. num should be chosen such that 10 1num −  is at least the largest 
value assumed by the qualitative variables defined through arguments var or var1 (and var2 (and 
var3)). I.e. if the values of the qualitative variable(s) vary between 0 and 9, then num should be at least 
1, if the values of the qualitative variable(s) vary between 0 and 99, then num should be at least 2, etc. 
 
Input arguments for the macros should contain only numerical variables, and no missing values should 
be present. (I work on the software to treat incomplete data, i.e. to deal with missing data.) I 
recommend to use only integers 1, 2, … for values of qualitative variables, although this is not strictly 
required for adequate functioning of the software. 
 
To illustrate, consider the following small hypothetical example. Let the original data on 8 cases, in 5 
variables or columns, be as follows: 
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     ID WEIGHT STRATUM     A      B      Z 
   1.00  10.00    1.00  1.00   1.00  15.00 
   2.00  10.00    1.00  1.00   1.00  17.00 
   3.00  12.00    1.00  1.00   2.00  12.00 
   4.00  10.00    1.00  1.00   2.00  12.80 
   5.00   5.00    1.00  2.00   1.00  10.50 
   6.00   5.00    1.00  2.00   1.00  12.00 
   7.00   5.00    1.00  2.00   2.00  13.40 
   8.00   5.00    1.00  2.00   2.00  12.00 

 
The column headings are the variable names, stored in the data dictionary of the survey data file (an 
SPSS data file, say). We assume that A and B are qualitative variables, while Z is a quantitative 
variable. STRATUM is qualitative too, with, in general, H categories. It is important for this variable 
that all categories 1, 2, …, H are represented in the survey data file. In our example, H = 1. 
 
Standard SPSS matrix commands (i.e. the GET command) are used to read the case identifiers, the 
case weights, STRATUM, and the survey variables A, B and Z into vectors ID, WE, STRATUM, A, B 
and Z, say. (Names are not really important, so far.) Now, suppose that the maximal calibration model 
is specified through the model formula 1 + A + B + Z + A.B + A.Z + B.Z. Then g-DESIGN provides the 
required macros DesC1, DesC2 and DesC1Z to transform the vectors A, B and Z into the 
corresponding columns of the (maximal) calibration design matrix X. The constant term is easy to 
construct, using matrix functions nrows and make. The matrix commands are: 
 

compute X0 = make(nrows(ID),1,1)           /*  Term: 1     */. 
DesC1 var=A des=XA lab=LabA                /*  Term: A     */. 
DesC1 var=B des=XB lab=LabB                /*  Term: B     */. 
DesC2 var1=A var2=B des=XAB lab=LabAB p=1  /*  Term: A.B   */. 
DesC1Z var=A zet=Z des=XAZ lab=LabAZ       /*  Term: A.Z   */. 
DesC1Z var=B zet=Z des=XBZ lab=LabBZ       /*  Term: B.Z   */. 
 

X0, XA, XB, XAB, XAZ, XBZ and also Z are matrices, with, in our example, numbers of columns 
equal to 1, 2, 2, 4, 2, 2 and 1, respectively; those matrices are the corresponding parts of the design 
matrix X. The survey data input file @XDATA is then easily created by the following SPSS matrix 
command, which saves the original data and the (maximal) calibration design matrix into that file: 
 
   save {ID, WE, STRATUM, A, B, Z, X0, XA, XB, XAB, XAZ, XBZ} 
     /outfile = 'C:\my documents\calibration\’ + @XDATA /format = F3 
     /variables = CASE,WEIGHT,STRATUM,A,B,Z,X0,A1,A2,B1,B2, 
                  AB11,AB12,AB21,AB22,A1Z,A2Z,B1Z,B2Z. 

 
The file @XDATA now contains the following data: 
 

CASE WEIGHT STRATUM A B  Z X0 A1 A2 B1 B2 AB11 AB12 AB21 AB22 A1Z A2Z B1Z B2Z 
   1     10       1 1 1 15  1  1  0  1  0    1    0    0    0  15   0  15   0 
   2     10       1 1 1 17  1  1  0  1  0    1    0    0    0  17   0  17   0 
   3     12       1 1 2 12  1  1  0  0  1    0    1    0    0  12   0   0  12 
   4     10       1 1 2 13  1  1  0  0  1    0    1    0    0  13   0   0  13 
   5      5       1 2 1 11  1  0  1  1  0    0    0    1    0   0  11  11   0 
   6      5       1 2 1 12  1  0  1  1  0    0    0    1    0   0  12  12   0 
   7      5       1 2 2 13  1  0  1  0  1    0    0    0    1   0  13   0  13 
   8      5       1 2 2 12  1  0  1  0  1    0    0    0    1   0  12   0  12 

 
The top row is just the list of variable names – as defined by the user – stored in the data dictionary of 
the file. The last 14 columns, from Z to B2Z, constitute the (maximal) design matrix X. Notice that z-
values are displayed as rounded to integer values; the exact values are stored in the file. It is clear that 
there are several linear dependencies between the columns: the matrix X has 14 columns, but its rank 
is only 7. Constructing the file @XDATA is this way has an important practical consequence: any 
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sub-model, including the model 1, or the model Z, of the maximal model 1 + A + B + Z + A.B + A.Z + 
B.Z can then easily be applied, just by selecting the appropriate variables from @XDATA. The list of 
variables to be selected is easily specified through the parameter @XVARS, as explained in section 
IV.B.2.ii. 
 
Before constructing the above SAVE command, the user can print the contents of the vectors that 
contain the labels for the columns in the matrices constructed by the macros. An appropriate PRINT 
command might simply look like: 
 
 print {LabA, LabB, LabAB, LabAZ, LabBZ}. 
 
or, including some information about what is printed: 
 
 print {LabA} /title "A categories are met in the following order:". 
 
Inspecting the output from such commands helps the user to define the list of variable names in the 
variable’s sub-command in the above SAVE command. 
 
Finally, notice that all commands presented in this section are matrix commands. They must therefore 
be executed only from within a matrix program. A matrix program is simply a set of matrix 
commands in a syntax file, delimited by the MATRIX and END MATRIX commands. The user is 
referred to, for instance, the SPSS 7.5 Advanced Model Guide. Notice that more recent versions of 
SPSS now include matrix language in the SPSS Base module. This implies that the SPSS Advanced 
Models module is not needed anymore to run our calibration software (including g-CALIB-S!). 
 
The file g-DESIGN.sps is reproduced in appendix VII.A.2. The core modules g-PREPARE.sps and g-
CALIB-S.sps are not reproduced in this report. Interested potential users can contact us: see section 
VII.A.1 for practical information. 
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IV.C COMMENTS, AND FUTURE DEVELOPMENTS OF G-CALIB-S 

 
IV.C.1 General comments 

 
IV.C.1.i SPSS as a development environment 
 
SPSS is considered primarily as an application tool for statistical purposes, and that’s exactly what it 
is. But I think it can be more, and in my humble opinion, I think that this work has demonstrated that 
SPSS is not so bad for development purposes. Generalised calibration is not a trivial statistical 
problem – or should we say mathematical problem, from the applied discipline of operations research? 
– and we have deliberately realised a useful tool. At the moment that we started implementing the 
methodology, we had no idea about all the features with respect to programming (accompanied with 
all the pitfalls!) offered by SPSS through its basic syntax language, matrix language and macro 
facilities. SPSS basic syntax language is mainly designed for data manipulation; the main object 
handled by basic syntax commands is the variable, not the case. This makes basic syntax commands 
sometimes difficult to understand, especially for the novice, and consequently also difficult for 
programming. Fortunately, there is the more traditional matrix language (including macro facilities), 
which is capable of filling in the gaps in the basic syntax language. It is that combination of basic 
syntax language and matrix language that makes SPSS suitable for development purposes. 
 
True, people are right when they say that SPSS’s programming language is old-fashioned, but that’s 
completely out of the question here. Our problem is to have access to a system that allows applying 
the most modern techniques in survey processing. This problem could be solved in different ways: we 
could buy another statistical package, so that we could then buy specialised routines that have been 
developed at other statistical institutes or universities; or we could ask our informatics department to 
develop a stand-alone package (for calibration) in whatever computer language they want; or we could 
return to the system of pen and paper (extended with scissors and glue to cut and paste): “keep it 
simple”. Finally, we have opted – or rather: we were forced to choose – for a do-it-yourself solution. 
The result of this is now available for usage, evaluation, improvement, or depreciation, as you like. 
 
Once more, I want to stress here the fact that we not only constructed just another tool (toy?) 
statisticians can work with, but that we have built up, in doing all this programming work, some know-
how in calibration. And that’s finally what we really have to be concerned about. 
 
In the course of developing g-CALIB-S, a process that is not necessarily finished yet, we learned a lot 
about SPSS syntax language. Looking up things in SPSS reference guides, we detected new features. 
Sometimes, we were able to exploit these immediately, but more often, we had to postpone their use, 
since it might take some time to work out new ideas, and since this would have delayed issuing a 
“final product”. One of these features is scripting. This might help us to construct a user-friendlier, 
and more automated, system. We’ll see! 
 
The Department of Methodology and Co-ordination at Statistics Belgium will have to decide soon 
how it will proceed further with respect to implementation of calibration and other survey 
methodology. It has by now purchased the SAS system. So, advantages and disadvantages of both 
SPSS and SAS will have to be examined. It is likely that both systems will continue being used at 
Statistics Belgium, at least for the next few years. This, in my opinion, justifies at least some minor 
modifications and improvements in g-CALIB-S, provided perhaps that this work will not cost to much 
time and human resources. Suggestions for such improvements and extension of our software are 
presented briefly in section IV.C.2. 
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IV.C.1.ii Performance of the SPSS modules 
 
Persistence of g_CALIB-S will depend largely on its performance. As the software will from now on 
be used more and more to support calculation of weighting factors, larger data sets will have to be 
treated soon. This is the ultimate test! So far, we have experienced good results with g-CALIB-S, but 
sometimes, the processing time is too large for being acceptable in practice. I cannot give much detail 
yet on evaluation of performance. This is a study of another nature, and I didn’t have enough time to 
work it out for this report. Moreover, as we are running SPSS on PCs, hardware specifications will 
have to be taken into account. Also, performance of g-CALIB-S should be compared with 
performance of similar packages, such as CALMAR, which is running under SAS. 
 
It must also be said that performance of SPSS Base will play an important role in this evaluation. We 
have developed g-CALIB-S under SPSS’s version 9.0, although version 10.0 is now available too. The 
reason is that our modules were not always running as they should, under SPSS 10.0. When trying to 
understand why failure occurred, we often came to the conclusion that bugs in SPSS itself were 
responsible. For some problems we could find a “SPSS 10.0 solution”, but implementation of such 
solutions would imply abandoning of what we thought being logical programming. 
 
Finally, we like to mention that our modules are running without problem under SPSS 8.0 (Base and 
Advanced Statistics modules). 
 
 
 
IV.C.2 Future developments 

 
IV.C.2.i Error detection and reporting 
 
More work could be done on error detection and reporting. We have already built in some tricks to 
capture and solve mistakes in input parameters (@…); this is the easy part.  
 
More difficult, but more important, to detect and solve are problems related to the data. At least two 
problems deserve special attention: consistency and missing values. In principle, these problems 
should be easy to solve, exploiting features of matrix language that have not been used so far. 
 
The most difficult problems are related to badly conditioned data. We have already tried to provide 
measures that indicate why the program fails, or why convergence is slow or not attained at all. We 
refer to section IV.B.2.iv for details; also refer to the discussion of the program parameter @INFO in 
section IV.B.2.ii. Apart from inspection of these measures in the Viewer output file, we have to rely 
on SPSS error messaging. Here, the HTML output file (section IV.B.5) can help to locate the place 
were the program goes wrong. 
 
After all, the user should take care when constructing the input data files. The subject matter 
statistician will play an important role in that phase of survey processing. Armed with a good 
understanding of the specificities of a given survey, and with detailed documentation of the data files 
and databases, s/he will generally be able to point out quickly how to circumvent data-related 
problems. 
 
 
IV.C.2.ii Implementation of determination of the maximum lower bound L* and minimum upper 

bound U * 

 
In section II.C we have proposed a method to detect extreme values for the upper and lower bound on 
the g-weights in the truncated linear and in the logit method. It was shown that the problem can be 
found as the solution of a linear programming problem, which in turn can be solved with the simplex 
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algorithm. Matrix language in SPSS provides the function SWEEP(matrix, k), which produces a new 
matrix by pivoting matrix on the element in the k-th row and k-th column. Pivoting is the main 
operation in the simplex algorithm, whence I believe that implementation of our technique in SPSS is 
feasible. 
 
The SAS system would simplify the task a lot. Surprisingly (or not?), SAS/IML, the matrix module in 
SAS, provides a procedure, called LP, to solve a linear programming problem of the form (II.6). So, 
SAS users would not have to implement the simplex algorithm. CALMAR developers should consider 
it! 
 
 
IV.C.2.iii Improving the interface: using Scripting 
 
In the SPSS Base 9.0 User’s Guide (p. 675) it is stipulated that scripting allows us to “ (1°) 
automatically customize output in the Viewer, (2°) open and save data files, (3°) display and 
manipulate dialog boxes, (4°) run data transformations and statistical procedures using command 
syntax, and (5°) export charts as graphics files in a number of formats ”. The relevance of all these 
features is not obvious, yet, but some of them might be interesting for further evaluation. It seems that 
scripting can be used to construct at least a better interface to the core modules. Given this, it might 
also be possible to add more flexibility and functionality to our software. 
 
I believe that scripting is worth being considered, although I have currently no experience at all. One 
advantage of script language is that it is based on the Sax Basic language (op. cit. p. 675), an object-
oriented programming language (and therefore more attractive to contemporary programmers). 
Combination of script language with syntax language (including matrix language) probably provides a 
powerful combination for programming in an SPSS environment. 
 
 
IV.C.2.iv More automated construction of @XDATA and @CALTOT, including management and 

exploitation of complex files 
 
It would be nice if the input files @XDATA and @CALTOT could be constructed more 
automatically, i.e. if we could develop modules, probably survey-specific, to transform basic databases 
into appropriately structured input files for g-CALIB-S. This would require perfect understanding of 
how basic databases are constructed, on the one hand, and which SPSS features are available for 
reading these databases, on the other hand. Definitely, more co-operation between methodologists in 
the information department and methodologists in the statistical department is desirable. Possibly 
other development tools can be integrated at this point. I believe that the present calibration study is 
providing indications concerning the construction of databases and files. Each case study definitely 
provides indications on how to set up an efficient data management system (for a given survey). The 
result should be a series of transformations of data files, with the restriction that the number and extent 
of transformation must be kept to a strict minimum, such that in different phases of survey processing 
appropriate and general tools can be used efficiently. More research has to be done, since we are now 
only at the beginning of implementation of calibration methodology in daily statistical practice. The 
literature on calibration methodology is already a step ahead of using basic calibration techniques in a 
less complex situation, as discussed in this text. The reader is referred to Renssen (1998) for 
calibration in more complex situations; see also the references in that paper. The ultimate aim is to 
integrate several surveys in the same system, and to produce thereof estimates that are consistent 
across the various surveys. 
 
SPSS allows reading and constructing files with a more complex structure than the common 
rectangular structure. We have recently created such a file, based on tax registers. The final file has 
records of two types: household records, and records corresponding to the person(s) (usually a single 
person, or husband and wife) within the same fiscal household. We will try to link this file with a 
register of administrative households, which is deduced from the register of Belgian citizens. Our goal 
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is to use indicative information on income, either in the design phase or in the estimation (calibration) 
phase of household based surveys. SPSS can handle rectangular files, nested files, grouped data files 
and mixed files. The above mentioned data file, with information from the tax register, has a nested (or 
hierarchical) structure. FILE TYPE and RECORD TYPE commands, followed by a DATA LIST 
command, allow reading the file as a person file, combining household information with person 
information. Alternatively, the nested file can also be read as a household file (using only the DATA 
LIST command), provided each household occupies the same number of records for each household. 
Otherwise, a rectangular household file can be constructed from the previously constructed person file. 
 
 
IV.C.2.v More efficient treatment of calibration strata 
 
The notion of calibration strata is a very useful one in practice. Here before we mentioned problems 
when large data sets are analysed. Introducing calibration strata definitely reduces problems related to 
the size of the survey data file: calculations are done stratum per stratum, having only the data for the 
stratum considered in the memory. Currently, however, g-CALIB-S reads the complete data set each 
time processing of a new stratum starts, next the relevant data is copied to new matrices, while the 
matrices holding the complete data set are released again. This is likely to be time consuming and 
should be avoided whenever possible. 
 
To circumvent these problems, I intend to use the split-file processing facility in combination with 
matrix language. However, its feasibility has to be examined further, since the data for one stratum 
should then be read in a single GET statement. The split-file approach seems to offer more flexibility 
with respect to the definition of calibration strata. On the other hand, it might require another 
structuring of data files: remember that currently data are read from two input files (@XDATA and 
@CALTOT). But rewriting the module g-PREPARE.sps could solve this problem: g-PREPARE.sps 
could merge @XDATA with @CALTOT, in order to construct a single input file for g-CALIB-S.sps. 
 
Alternatively, the case selection feature could be examined for usage with matrix language. 
Concerning both the case selection and the split file feature, we refer to the SPSS syntax guides (on 
matrix language) for more details. 
 
 
IV.C.2.vi Calculation of calibration estimates for study variables 
 
It would not be difficult to extend our software with a module for calculation of estimates of totals of 
study variables. Notice (1°) that study variables can be included in the survey data file @XDATA, and 
(2°) that this file can easily be merged with the output file WEIGHTS.sav, holding the final g-weights 
and calibrated weights. Treatment of missing values can be considered; the required formulae have 
been discussed in section III.F. 
 
Basic syntax commands may be used for these purposes. However, matrix language too is an option, 
especially when (preparation for) variance estimation is considered (see the next sub-section), and/or 
when simultaneous estimation of totals for several study variables is considered. 
 
 
IV.C.2.vii Preparing for (co-) variance estimation 
 
In section III.H we briefly discussed variance estimation in the context of generalised calibration. It 
turns out that this can be based on calculation of (linear) regression residuals. This only involves the 
design matrix, the (initial/sampling or calibrated) weights, and, of course, the study variables. 
Conditionally on having read these data structures from the relevant file(s), it would then be easy to 
implement the calculation of residuals: one matrix command would suffice (in principle). Showing yet 
again the efficiency of matrix language, both in mathematics and in programming languages! 
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Calculation of residuals is one very important step in variance estimation. Ultimate calculation of 
variances, however, involves the second-order inclusion probabilities. For some complex designs, this 
may need the construction, storage and usage of very large square matrices, of order n, holding the 
second-order inclusion probabilities. For less complex designs, however, one might be able to reduce 
storage of large second-order inclusion probability matrices to storage of smaller vectors or matrices 
just holding the parameters necessary for calculation of second-order inclusion probabilities. 
Appropriate software modules then have to be developed to combine all the components in variance 
estimation formulae. 
 
 
IV.C.2.viii Extension of the calibration models with the weighting factors qk 
 

Our software currently deals with the calibration problem min ; ,d g g gT T
BG� �
 �

�

X t= ∈Ω . The 

extension min ; ,d Q g g gT T
BG− = ∈1 � �
 �

�

X t Ω  will be implemented soon. Notice that this will imply 

another variable to be read from the survey data input file @DATA. 
 
A variable holding the factors qk  would be similar to the variables STRATUM, WEIGHT and CASE 
that have to be present in the survey data input file. It is planned to modify g-CALIB-S such that the 
names of these variables no longer need to be fixed. It will give the user more flexibility since s/he 
then can choose more easily a calibration stratum variable, a sampling weight variable, … from the 
input file. 
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V.A REGISTERS AND FRAMES 

 
The power of calibration depends to a large extent on the amount and quality of auxiliary information 
that is available, hence on external sources of different kinds. It is beyond the scope of this study to 
discuss the external sources used in the applications hereafter. More work definitely has to be done at 
Statistics Belgium to set up a good system of databases where good calibration benchmarks and 
“individual” information can be found, or to make existing sources more readily available for that 
purpose. 
 
For household and individual surveys, the main source is the National Register of Physical Persons. A 
reduced version of this register is available to the methodological department for sampling and 
estimation. From this register we have derived a household frame. So far we have used only household 
characteristics such as the number of members, place of residence, and characteristics copied from the 
reference person (RP) of the household, i.e. its age (in 5-year age classes) and professional status. In 
the future, we will try to describe the structure of the household in some more detail. So it may be 
interesting to distinguish 1-parent households from traditional 2-parent ones, households without 
children from households with children, etc. The National Register contains enough information to 
derive that kind of household characteristics. 
 
We have also prepared now for linking the National Register, or a derived household frame, with a 
frame of fiscal households. This is an attempt to get indicative information on income at the level of 
administrative households. 
 
For business surveys, the main source of information is DBRIS, the Banque de Données des 
Redevables de l’Information Statistique. More about this integrated database is told in section V.G, 
where an application of calibration to the Structural Business Survey is discussed. Linkage of this 
database with data from social security services is established. 
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V.B CALIBRATION OF THE LABOUR FORCE SURVEY (LFS) 

 
V.B.1 Introduction 

 
The Labour Force Survey (LFS) deserves special attention in this study, since it is used as a reference 
for calibration of several, if not all, household-based surveys at Statistics Belgium: the Household 
Budget Survey (HBS), the Time Use Survey (TUS), the Travel Survey (TS). Moreover, external users 
often demand results from the LFS, hence the need for careful extrapolation of this survey. On the 
other hand, we’ll see in section V.F that LFS estimates on labour volume can be adjusted in turn to 
meet some relative distribution of labour volume by branch of industry from the national accounts 
(NA). This leads us to the more advanced problem of mutual consistency between results from 
different surveys, which can be solved generally by repeated calibration. 
 
The initial sample for the LFS is quite large (about 110,000 individuals, or 48,000 households), and 
participation of selected households and individuals is compulsory, such that very reliable estimates 
can be obtained, provided that care is taken in all phases of the survey process: starting from sampling 
design, via collection and coding, editing and imputation, to calibration, estimation and evaluation. 
Obviously in the present study, we mainly focus on calibration (and estimation). However, as it is 
important to be aware of the sampling design in calibration too, we also reserve some space for a brief 
discussion of the design of the LFS. 
 
The sampling design is quite complex, as it will be explained in section V.B.2. This implies that it is 
not straightforward to calculate first and second order inclusion probabilities, for households and 
individuals, which are required to derive sampling weights and to perform variance estimation in the 
context of generalised calibration (section III.G). We mention briefly a mathematical model in order to 
calculate (approximate) first and second order inclusion probabilities. 
 
Currently, calibration of the LFS seems to ignore the sampling design, at least to some extent. 
Extrapolation is simply complete post-stratification of individuals; more details are given in section 
V.B.3. We there comment also on the (possible) effects of ignoring sampling weights in post-
stratification. We have not done any numerical comparison yet, since this would take quite some time, 
and since data files used for calibration should be carefully constructed and well understood. The latter 
is beyond the author’s capabilities at present, since he is just a methodologist (and he likes that!), and 
not at all a subject matter statistician with regards to the LFS (which he would not like to be!). In other 
words, we need a more thorough analysis of the LFS on its own, which will be the topic of another 
paper. 
 
We will see later that estimates from the LFS are used as benchmarks for calibration of several other 
surveys; household characteristics are sometimes used as calibration variables, while at other instances 
individual characteristics would be more convenient. The LFS should therefore provide precise 
estimates both on the household and on the individual level. As an example: the total and regional 
sizes of the Belgian population of individuals should be accurately estimated – as sums of calibrated 
individual weights for sampled (and responding) individuals – as well as total and regional sizes of the 
Belgian population of (private) households – as sums of calibrated household weights for sampled 
(and responding) households. As we will see in section V.B.3, current post-stratification is using 
individual characteristics only, and household weights are obtained as averages of individual weights 
for members of the household. So, one can argue against the appropriateness and precision of totals of 
household variables. We can do better, through simultaneous calibration of household and individual 
characteristics, using, henceforth, calibration (or reference) totals for households as well as for 
individuals. The methodology to achieve this is explained in section V.B.4. An attempt has already 
been made, but the techniques are not yet implemented in the production process. 
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We have not reproduced weights for the LFS in this text, since that would not contribute to the 
completeness of this text. However, estimates from the LFS are used in various other case studies in 
this report, which justifies at least a brief discussion of the LFS. 
 
 
V.B.2 The sampling design 

 
We now present briefly the sampling design. The purpose is to show how sampling weights can be 
calculated for this survey, which is based on a complex sampling design. Notice that the LFS has been 
restructured since 1999. One of its main features is that it became a rotational survey. I will not give 
numerical values of the sampling design parameters in this report. 
 
First of all, the Belgian population (of private households) is geographically stratified according to the 
10 administrative provinces and the Brussels Metropolitan Area. A frame of households is derived 
from the National Register of Belgian citizens. 
 
In the first stage of the sampling procedure (within each stratum separately), sections are drawn 
according to a probability proportional to size (PPS) sampling scheme. “Sections” are parts of current 
communities (denoted c), but larger than the frequently used statistical sections. The size measure 
used is the number of households in section c. The total number of times a section c is selected is 
fixed, and PPS sampling is with replacement. A list-sequential scheme is applied. However, it can be 
argued that an assumption of multinomial PPS sampling adequately approximates the sequential 
scheme. Such a mathematical model is easier to handle, and ultimately provides a(n) (approximate) 
formula for calculating 2nd-order inclusion probabilities too (based on a generalisation of formula 3.8.3 
in Särndal et al (1992)), although we do not discuss this further in detail in this report. To each draw of 
a section corresponds a fixed number (depending on stratum) of households to be selected. Notice that 
sections are in fact PSUs (primary sampling units) in multi-stage cluster sampling of individuals. 
 
Next, the “sample of sections” (taking into account their multiplicities) is spread “uniformly” over 12 
trimesters (3 years). The procedure is such that (1°) approximately the same number of households 
will be drawn and contacted in each trimester, and (2°) the number of households drawn in each 
trimester is (approximately) fixed. While sections are drawn for a 3-year period, households in 
selected sections are drawn each year, using the most recent version of the National Register. Some 
realistic assumptions result in the fact that allocation of sections to trimesters does not have to be made 
explicit in formulae for inclusion probabilities. 
 
Within each selected section, we then draw completely at random (i.e. according to SRS) the (random) 
number of households that has to be selected. Hence sampling of households is a two-stage cluster 
sampling design within strata. It is therefore relatively easy to obtain (approximate) 1st and 2nd-order 
inclusion probabilities for households. The 1st-order probabilities, and hence the corresponding 
sampling weights, do only depend on the total (fixed) number of households to be selected in a given 
stratum and on the total number of households in the stratum. Hence the sampling design is self-
weighting within the 11 geographical strata. 
 
Since all individuals (above 15 years old) in a selected household are interviewed, sampling weights 
for individuals equal sampling weights of the household to which they belong. 
Non-response rates are low for the LFS, because of the compulsory character of the survey. This 
makes the LFS an interesting survey for a thorough study of calibration techniques, since calibration 
then almost only corrects for sampling error, for which it has initially been developed, and since there 
is only limited disturbance due to non-response (given that other non-sampling errors also have a 
small impact). 
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V.B.3 Current calibration: post-stratification of individuals 

 
Currently, extrapolation of the LFS is a complete post-stratification technique. Sampling weights can 
be ignored, since post-strata are subsets of sampling strata: see section III.B.1 and the remarks on the 
sampling design for the LFS in the previous sub-section. 
 
Calibration, i.e. post-stratification, is at individual level, not at household level. Individuals are post-
stratified by 4 variables: 

� Gender; 
� Age, grouped in 16 classes (0-4 yrs, 4-9, …, 70-74, 75+); 
� The geographical stratification variable used in the sampling design (11 categories); 
� Reference period, i.e. the trimester for which a household has been selected. 

No cell in the resulting four-way classification is empty or considered to be too small, so there was no 
need to regroup some of the 1408 cells (for one survey year). Calibration totals are obtained from the 
National Register. 
 
After calculating post-stratification weights for (sampled, and responding) individuals (including 
children of less than 15 years old that are in the selected households), calibration weights for 
households are obtained by averaging the weights of the members of the household. This approach has 
not been justified in any of the previous sections in this report. I strongly recommend a thorough 
comparison of this technique with the techniques discussed in sections III.D-E, in particular the 
technique of imposing equality of g-weights within clusters (households), if calibration is on 
individual characteristics. 
 
 
 
V.B.4 Suggestion: calibration on both individual and household characteristics 

 
The LFS data clearly provide a rich basis for the development of a sophisticated weighting scheme, 
taking individual as well as household variables into account. Hence we have a perfect situation for 
comparison of different calibration techniques, as outlined in section III.E. The ultimate goal of a more 
sophisticated calibration strategy is not its complexity, but its efficiency, such that reliability of 
estimates, which will be used as calibration totals for other surveys, is assured, and such that 
numerical consistency of estimates across different surveys is improved. Notice that one of the 
purposes of generalised calibration, other than simple complete post-stratification, is to obtain stability 
of g-weights and calibrated weights (and estimates based on these). Of course, post-stratification is not 
necessarily doomed a priori to be of bad quality, especially not for such a large respondent sample. 
 
A study of calibration of the LFS should start with a complete overview of the different uses of the 
results of the LFS. Notice that the type of variables for which totals have to be estimated, has an 
impact on the calibration model that might be chosen. Also, the various external sources that are 
available should be investigated further, and new sources is being looked after. 
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V.C CALIBRATION OF THE HOUSEHOLD BUDGET SURVEY (HBS) 

 
V.C.1 Introduction 

 
In this section we focus on the Household Budget Survey (HBS). Our main purpose here is to 
summarise the basic principles of the sampling design, and the way to incorporate the design in up-
weighting schemes. We do not intend to repeat the calculations for the weights for the HBS, but a 
discussion of present practice is interesting for at least two reasons: (1°) to show how the nature of the 
study variables has to be considered when a weighting scheme is set up; (2°) to prepare for a more 
extensive numerical illustration of weighting for the Time Use Survey (TUS) in section V.D. 
 
A study of calibration models for the HBS is important to be considered, since the HBS has many 
users. One of them is the service for calculation of the consumer price index (CPI). We do not have to 
deliver the weights to this service, but consideration of the needs for the CPI may shed light on the 
quality of the data that are collected in the HBS. This, together with lessons drawn from a study of 
calibration, may give indications about possible needs for improvement of the HBS. 
 
The HBS has been reorganised in 1999. Since then it is a continuous survey. The burden for sampled 
households and individuals has been reduced: they now have to record details about their expenses 
during 1 month (the reference month) in a household or individual diary, while an additional 
questionnaire retrospectively collects information on expenses that cannot be covered by the diaries. 
This questionnaire asks for information on expenses during a period of 4 months: the reference month 
and the 3 preceding months. This allows detecting and covering expenses with some larger periodicity 
(e.g. insurance payments, rent for housing, etc), or expenses with an occasional character (e.g. buying 
a car, travel expenses, etc). 
 
The reformed HBS actually started in November and December 1998, as a pilot survey (e.g. to get an 
idea about response rates). The data for these two months could be incorporated in the results. In this 
text, however, we ignore the data collected on households for which the reference month is either 
November or December 1998. 
 
Response rates are very low for the HBS (less than 10%). A discussion of generalised calibration of 
the HBS therefore should focus on its potential to correct for non-response. Calibration models should 
incorporate (non-) response models, or, alternatively, an integrated system of response modelling to 
correct for differential non-response and calibration modelling to reduce sampling error should be 
studied. Variance estimation is an important issue in that context. This, however, is beyond the scope 
of this text. Here (and in section V.D) we use calibration as a method for simultaneous adjustment for 
non-response (a source of non-sampling error) and sampling error. 
 
 
V.C.2 The sampling design, and Phase I inclusion probabilities 

 
The sampling design for the HBS is very complex. It is a multi-phase design, of which a very brief 
(and certainly incomplete) discussion is presented here. Our main interest is to show how first-order 
inclusion probabilities, and hence sampling weights, can be calculated. These will be incorporated as 
initial weights in generalised calibration for the TUS in section V.D. The TUS is in fact a continuation 
of the HBS: responding households (for the HBS) are invited to participate in the TUS too. Therefore, 
the sampling design for the HBS only needs to be extended by one more phase (Phase IV here below), 
in order to cover the entire sampling procedure for the TUS. That is why this section also covers the 
TUS. 
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Three phases can be considered in the sampling procedure for the HBS; a 4th phase is to be considered 
for the TUS. However, a preliminary step in fact is the geographical stratification of the population 
(of households or individuals). The strata are the three regions Brussels Metropolitan Area, Flanders 
and Wallonie; they are numbered h = 1, 2, 3, respectively. Experience has shown that response is 
lower, for instance, in Brussels. Hence initial sampling fractions are higher for this stratum. Given this 
stratification, the following multi-phase procedure (within each stratum) is designed. 
 
Phase I 2-stage sampling of households (within each region h) 
 

Stage I.1 Probability proportional to size (PPS) sampling of communities c 
 

• We draw n hI  times, with replacement (WR), a community in region h. n hI  is fixed a priori. 
n hcI  will denote the number of times community hc has been selected; this number is random. 

Notice that n nh hc
c s h

I I

I

=
∈
∑ , which is fixed. 

• The size measure used is the number Mhc  of households in community hc (i.e. community c in 
stratum h). 

 
Stage I.2 Stratified simple random sampling (STR-SRS) of households in selected 

communities 
 

• The initial (random) sample size is m n Ghc hc h= I , in a selected community hc, where Gh  is a 
fixed “group” size depending only on region h. Groups are sets of households, to be assigned 
to the same interviewer. Gh  is larger for Brussels (h = 1) then for the other two strata, because 
of higher non-response in Brussels. 

• The stratification variable is household size, with categories 1, 2, 3, 4 and 5+ (numbered k = 1, 
…, 5). 

• Per “group”, with size Gh , of households to be selected, the allocation to the strata k is fixed; 

let Ghk  be the number of households to be selected per group in stratum k, with G Gh hk
k

= ∑ . 

Then, there will finally be m n Ghck hc hk= I  households selected in stratum k in selected 

community hc, and m mhc hck
k

= ∑ . Ghk  is relatively larger for k = 1, since 1-person 

households tend to have lower response rates than others.  
 
Phase II A response mechanism reduces the initial household samples to respondent samples 
 

• Let �mhck  be the number of responding households, among the mhck  initially selected in Phase 
I. 

• The response probability for household i in stratum k in community hc is denoted θhcki . Then 

�m mhck hck  is the observed value for θhcki , which is actually very small (less then 10%). A 
response model might be used to smooth observed response probabilities. 

 
Phase III Occasionally, the size of the respondent samples is limited. 
 

• Hence the respondent samples are reduced, in order not to exceed a maximum number of 
respondents per group. The main purpose of this additional step is to assure that different 
interviewers will have more or less the same workload per group of households they have 
been assigned to. (It’s a way to simplify payment of interviewers.) 

• The maximum number of respondents per group is set to qh , depending only on region h, so 
that the maximum number of households interviewed in a selected community hc is n qhc hI . 
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• The sizes of the final respondent samples (within communities hc) per stratum k are ��mhck . 
 
Phase IV A second response mechanism reduces the final samples for the HBS to final TUS 

samples 
 

• Let mhck
'  be the sizes of the final TUS respondent samples. 

• m mhck hck
'

��  is an observed dropout rate, measuring willingness of households having 
participated in the HBS, to continue participation in the TUS. A dropout model might be used 
to smooth observed dropout rates. 

 
 
It further has to be noticed that sampled households are allocated to a particular month, which is called 
the reference month for that household. We do not discuss this property of the sampling design, and its 
consequences, in detail in the present text. For calibration purposes we assume that households 
allocated to different non-overlapping time periods (reference months, trimesters (as a series of three 
reference months), etc) are elements of independent samples. 
 
Assuming proper or multinomial PPS sampling in Phase I (see also section V.B), it is possible to 
derive manageable (approximate) formulae for 1st (and 2nd) order inclusion probabilities, and hence for 
sampling weights, corresponding to Phase I. The result is the following 1st order inclusion probability 
for a household i in (household size) stratum k in community hc : 
 

 π =hcki
hk

hck

hc

h

m

M

M

M
, (V.1) 

 

where Mhck  is the number of households in stratum k in community hc, M Mhc hck
k

= ∑  is the 

number of households in community hc, M Mh hc
c

= ∑  is the total number of households in 

stratum h, and mhc  is the number of sampled households in community hc (see Phase I, Stage 
I.2 here before). We can distinguish between a calculated value for mhc , and an actual value. 
The former are following from the above reasoning, and are based on predetermined group sizes; the 
latter are obtained simply by counting from the sample. I recommend using the actual values when 1st 
order inclusion probabilities have to be calculated and used as initial weights in calibration. 
 
The Phase I sampling weights for households are then calculated from: 
 

 d
M

m

M

Mi hcki
hck

hk

h

hc

= π =−1 , (V.2) 

 
for any household i in (household size) stratum k in community hc. The numbers Mhck , Mhc  and Mh  
are obtained from a frame of households, which is derived from the Belgian National Register of 
individuals. This sampling weight is also valid for any member of household i, since all household 
members all interviewed for the HBS (and TUS). 
 
One could construct response or dropout models, to include additional corrections in these sampling 
weights. Our choice however is to use the above Phase I sampling weights as initial weights in 
generalised calibration. Consequently, generalised calibration is intended to correct for non-response 
as well as for sampling error. 
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A model-based study (using logit modelling, for instance) of non-response for the HBS (and dropout 
for the TUS) would be very useful, since it could give indications about the auxiliary variables to be 
included in a calibration model that has to correct for non-response. This, however, is not a topic for 
the present study. 
 
 
V.C.3 Current post-stratification, and suggested generalised calibration 

 
Current extrapolation for the HBS is still based on a traditional post-stratification technique. Post-
stratification for households is based on the following post-stratification variables: 
 

� The geographical stratification variable used in the sampling design (3 categories); 
� The size of the household (categories 1, 2, 3, 4+), also used in the sampling design; 
� The number of active persons in the household (categories 0-1, 2+); 
� Age of RP, combined with professional status of RP (categories employed, self-employed, 

non-active <60 yrs old, non-active 60-69 yrs old, non-active 70+ yrs old); 
� Reference period, e.g. the month or trimester for which a household has been selected. 

 
A complete cross-classification by these variables is not possible: there are too many cells, given that 
only 3,745 households have agreed to participate in the HBS in 1999. Hence, many cells had to be 
regrouped. 
 
Estimation of totals has to be carried out for several types of variables (at household level here only), 
e.g. 
 

� Monthly expenditure variables y and y j , with observed values yi  = expenditure by household 

i in its reference month, and y ji  = expenditure in month j by household i; 

� Quarterly expenditure variables q and q j , with observed values qi  = expenditure by 

household i in the 4-month period (j–3, j), where j is the reference month of household i, and 
q ji  = expenditure in month j by household i, which is not directly observed, but derived 

from an observed expenditure covering 4 months. 
 
Other periodicities are possible, but considering this here would not contribute to the present 
discussion. The above variables could also be replaced with a corresponding set of indicator variables, 
indicating whether there was a strictly positive expenditure or not (for a given period). 
 
If the 12 sub-samples, corresponding to 12 reference months, are treated as being independent, then 
extrapolation can be done for each month separately, and a total estimated expenditure for the survey 
year and for the entire population (possibly restricted to a geographical stratum, or to another domain 

of interest) would be calculated from � �T T w y w yy yj
j

ji ji
ij

ji i
ij

= = =∑ ∑∑ ∑∑ , where the summation 

with index i is over households with reference month j. (Notice that, in fact, 12 variables y j  are 

reduced to one variable y.) Stated in terms of generalised calibration methodology, it follows that, for 

each month j, a set of calibrated weights w j jiw= � �  or g-weights ~ ~g j jig= � �  for households with 

reference month j has to be found, based on a calibration model min
~ ~ ;

~ ~d g Z D g sj j j
T

j jG� �� �= , where 

~d j  is a vector of initial weights for households with reference month j, Z j  is an appropriate design 

matrix, based on households with reference month j and household level auxiliary information, and s 
is a corresponding vector of calibration totals (which does not depend on reference month!). See 
section III.E.3 for a derivation of this calibration model. The same calibration results can also be used 
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to estimate the population total (for the entire survey year) for q-variables: 
� �

*T T w q w q w qq qj
j

ji ji
ij

ji i
ij

ji i
ij

= = = =∑ ∑∑ ∑∑ ∑∑1
4 , where q qi i

* = 1
4 . 

 
Alternatively, calibration (or post-stratification in particular) can be done independently for each 
trimester, using all households with reference month in the trimester considered. Replacing subscript j 
with subscript t, and introducing notation referring to trimesters instead of months, it will be clear that, 
within the generalised calibration framework, we then consider a calibration model 

min
~ ~ ;

~ ~d g Z D g st t t
T

t tG� �� �=  for each trimester t. Notice that the vector s of calibration totals has not 

changed. Moreover, time (e.g. month j) can be reintroduced as a calibration stratum variable; the same 

vector s is then repeated for each calibration stratum. Let w t
*  be a solution to 

min
~ ~ ;

~ ~d g Z D g st t t
T

t tG� �� �= , t = 1, …, 4. The above-mentioned estimators �Ty  and �Tq  will then be 

replaced with estimators �
* *T w yy ti i

it

= ∑∑  and �
* * *T w qq ti i

it

= ∑∑ , respectively, with q qi i
* = 1

4  as 

before. 
 
Currently, extrapolation is done for each trimester separately, as explained in the previous paragraph. 
The extrapolation coefficients thus obtained are transmitted to Eurostat, together with the observed 
(edited) data. The calibrated weights are considered to be stable. 
 
The advantage of a period-based calibration method (i.e. to use time as a calibration stratification) is 
that period-specific estimates are obtained. Provided that these are precise, they might be used to study 
trends in expenditure, and to detect possible seasonal effects. 
 

A comparative study of weighting schemes for the HBS has to be carried out. Notice that here 
too two-level calibration can be considered. Moreover, it follows from the continuity of the sample 
that time will be an important calibration variable (possibly the calibration stratum variable), as 
explained in the previous paragraphs. 

 
Current post-stratification techniques have to be compared with alternative calibration 

techniques. By the way, post-stratification as outlined in the beginning of this sub-section can, strictly 
speaking, not be justified, given the general discussion in section III.B.1. Indeed, it follows from 
formula (V.2) for the Phase I sampling weights that the sampling design is not self-weighting within 
post-strata: these sampling weights do depend on community c, while that level of geographical 
stratification is not appearing in the above list of post-stratification variables. We will have to 
investigate this further in order to understand possible effects of post-stratification in a situation where 
application of post-stratification is theoretically not allowed. 

 
 

V.C.4 Calculation of Phase I sampling weights 

 
This section V.C is closed with some further comments and results with respect to the calculation of 
Phase I 1st order inclusion probabilities and sampling weights. 
 
As mentioned before, we have not used the pilot survey data carried out in November and December 
1998, but only data from households with reference month in 1999. The weights are at household 
level, and therefore also valid at individual level, although no individual auxiliary data is used. Actual 
sample sizes mhc  (see section V.C.2) are thus obtained from the 1999 initial HBS sample. Population 

counts of households, i.e. Mhck , Mhc  and Mh , are obtained from a frame of households, derived 
from the National Register of individuals. The 1998 register has been used, since sampling was also 
based on this register. Two series of sampling weights have been calculated: the “calculated” series 
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based on calculated values for the sample sizes mhc , and the “actual” series based on the sample itself. 
A graphical comparison has revealed that the two series are very close to each other. This is also 
reflected in the table here below. After calculating the two series of weights and assigning the right 
pair of weights to each sampled household, it is possible to estimate the number of households per 
region (stratum) as the sum of the sampling weights for households within the region. “Valid N” refers 
to the number of households in the initial sample. 
 
 

Table 5.1 Estimated numbers of households, based on two series of Phase I sampling 
weights, by region and by reference month 

 
  Phase I sampling 

weights with 
ACTUAL 

sample size 

Phase I sampling 
weights with 

CALCULATED 
sample size 

 

  Sum Sum Valid N 
Region Brus-Brux 469,830.3 476,188.8 14,664 

 Vlaanderen 2,369,250.2 2,419,729.4 26,813 
 Wallonie 1,367,248.8 1,396,778.2 19,981 

Table Total  4,206,329.3 4,292,696.4 61,458 
Reference month 1 440,797.6 453,879.1 5,569 

 2 328,153.9 335,932.2 4,664 
 3 339,771.9 347,040.9 5,074 
 4 344,016.9 350,714.0 5,131 
 5 345,287.6 352,191.6 5,102 
 6 343,612.2 350,522.0 5,131 
 7 348,455.3 354,942.2 5,131 
 8 342,241.1 348,223.3 5,131 
 9 345,362.9 350,951.2 5,132 
 10 341,117.4 348,223.3 5,131 
 11 343,563.1 349,890.6 5,131 
 12 343,949.4 350,185.9 5,131 

Table Total  4,206,329.3 4,292,696.4 61,458 
 
 
The numbers of households in the 1998 sampling frame, per region, are: 467,860 for Brus-Brux, 
2,353,864 for Vlaanderen and 1,356,956 for Wallonie. Both series of sampling weights are over-
estimating the frame-based counts of households in the 3 regions. However, the series of weights 
based on actual sample sizes provides less over-estimating values, and, more importantly, provides a 
relative distribution of households across regions, which is closer to the frame-based one. Over-
estimation of absolute counts is not that important, provided the relative bias is similar in different 
sub-populations. Further calibration will automatically adjust such a bias. 
 
No further numerical results have been obtained for the HBS, since the respondents sample (of 
households) was not available to me at the moment of dealing with this survey in the context of 
writing this text on calibration. Notice, however, that the respondent sample for the HBS is close to the 
respondent sample for the TUS. The latter has been explored extensively, as it will be demonstrated in 
the next section. 
 



  

 –  101  – 

V.D CALIBRATION FOR THE TIME USE SURVEY (TUS) 

 
V.D.1 Introduction – Preparing input files for g-CALIB-S 

 
The Time Use Survey (TUS) 1999 has been organised as a continuation of the HBS 1999. Details 
about the sampling design, non-response problems, and general issues on calibration, together with 
some more background information on this survey may therefore be found in section V.C on the HBS 
1999. 
 
In the next sub-sections, we will use the Phase I sampling weights, discussed at length in section V.C, 
as initial weights for calibration of the TUS. It is not the purpose of the present study to examine in 
detail the different weighting schemes that will be obtained, nor to provide a comparison. Rather this 
text is focussing on technical aspects of calibration. One important issue in this report is that, based on 
the TUS 1999, an illustration is given of the two-level simultaneous calibration technique discussed in 
section III.E, as well as of the related basic and derived techniques for one-level calibration (e.g. the 
clustering technique in sections III.D and III.E.4). Thus, the TUS is used to illustrate how 
sophisticated calibration tools could be used to find optimal calibration weights for, for instance, the 
LFS (see section V.B.4), and obviously also for other household-based surveys, and, why not, 
probably also for business surveys. 
 
The TUS is being analysed by specialists at the Vrije Universiteit Brussel, i.e. by Prof. Dr. I. Glorieux 
and his assistant Ms. J. Vandeweyer. Several discussions of up-weighting of the TUS have already 
taken place between those people and myself. I have tried to incorporate their ideas and their wishes in 
the present study. However, this work is not completely finished yet. The main purpose of my own 
work on calibration so far is to provide the tools (SPSS syntax programs), not only for calibration, 
given the required input files are ready, but also to construct these input files from various other 
sources. A lot of time has in fact been spent on bringing different files together. More work has to be 
done, but I believe a good starting point has now been reached, making creation of input files for 
calibration more easy, more reliable, and faster, in the future. 
 
Consequently, we do not much concentrate on numerical results in this section, but more on the 
procedures to obtain those results. Numerical results shown hereafter should therefore primarily be 
considered as illustrations of generalised calibration methodology. 
 
A syntax program (PREPARE_TUSDATA.sav) that prepares the basic TUS data for different types of 
calibration is presented in appendix VII.B.1; output files from this syntax program are: TUS99-XD 

DATA.sav, TUS99-HD DATA.sav, TUS99-ZD DATA.sav and TUS99-VD DATA.sav. The program is still 
a bit messy, but can be a good starting point for future refinements and improvement of the survey 
data files that will be used as input files for calibration. The program itself provides an outline of the 
steps that have been, and that will always have to be taken to prepare the required files. No further 
discussion is included at this place; the interested reader can have a look at the syntax for more details. 
A guide to understand more easily the data transformation procedures is the summary table 3.8 in 
section III.E.6. One lesson can be drawn from this: more work has to be done with respect to 
preparation of basic files, and integration of various files into a single (application-specific) system. 
 
Section 2 in PREPARE_TUSDATA.sav shows that the calibration strata (in the variable STRATUM, see 
section IV.B.3) are the three geographical regions Brus-Brux, Vlaanderen and Wallonie. We have 
aggregated the above mentioned data files by STRATUM. The aggregated files are useful in two 
ways: (1°) a zero sample total (per calibration stratum) for a particular calibration indicates that this 
variable should be omitted from the data files, or at least not be included in the calibration variable list 
@XVARS; (2°) the sample totals for these calibration variables can be replaced with the 
corresponding (estimated) population totals, i.e. the calibration totals. The latter is exactly what we 
have done to prepare the calibration totals files; the way to do this was quasi manually; calibration 
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totals are estimates from the 1999 LFS. The resulting files are called TUS99-XD TOTALS t.sav, 
TUS99-HD TOTALS t.sav, TUS99-ZD TOTALS s.sav and TUS99-VD TOTALS u.sav. Notice the similarity 
between the names of the 8 files that have been prepared, and the matrix notation in section III.E 
(especially in table 3.8 in section III.E.6). 
 
We are then ready to apply different calibration models to each pair of data files, e.g. TUS99-XD 

DATA.sav and TUS99-XD TOTALS t.sav. The content of each pair of files is briefly discussed in the 
next sub-sections V.D.2.i-iv, although the calibration variables actually used are not our main concern 
in this study. Further research may result in the incorporation of other calibration variables. 
 
 
V.D.2 One-level and two-level calibration of the TUS 

 
V.D.2.i Individual-level calibration using type X d t, ,� �  data 

 
Three original qualitative variables, representing individual characteristics of responding people in the 
1999 TUS, are transformed into calibration variables (i.e. indicator variables): 
 

� Gender (male, female; calibration variables: S1, S2); 
� Age (<30, 30-39, 40-49, 50-59, 60-69, 70+; calibration variables: A1 to A6); 
� Education (LO or unknown, LMO, HMO/VS, HOBU, UNI; calibration variables: E1 to 

E5). 
 
Hence, we have variables S1, S2, A1 to A6 and E1 to E5 in TUS99-XD DATA.sav and TUS99-XD 

TOTALS t.sav; a constant variable X0 is included too, as usual. The calibration stratum variable 
STRATUM distinguishes the three major Belgian regions, as mentioned already; the file TUS99-XD 

DATA.sav includes a variable PROV, which can be used as an alternative calibration stratification 
variable (PROV should then be renamed as STRATUM; the file TUS99-XD TOTALS t.sav then has to 
be redefined appropriately). The initial weight variable WEIGHT contains the Phase I sampling 
weights (based on actual counts mhc , as discussed in section V.C; the series based on calculated mhc  is 
stored too in the survey data file). A household identification variable (CLUSTER) is present in 
TUS99-XD DATA.sav, but is not used here. 
 

Two calibration models min ; ,d g Dg gT T
BG� �� �X t= ∈Ω  have been applied: the linear method and 

the multiplicative method, both with model formula 1 + Gender + Age + Education. Notice that the 
linear method will then produce g-weights that are additive in the calibration variables, while the 
multiplicative method produces g-weights that are additive in the calibration variables on a 
logarithmic scale. The scale parameter is always estimated from the data, using the constant variable 
X0; the g-weights are with respect to the scaled weights. The two series of g-weights are shown in 
figure 5.1. With the multiplicative method, the g-weights are less distributed, and there are less 
extreme values, at least for stratum 2 (Vlaanderen). A practical advantage of the g-weights under the 
multiplicative method is that are all positive. This truncation from below is partly responsible for the 
smaller dispersion in the g-weights too. 
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Fig 5.1 Comparison of 2 series of g-weights from individual-level calibration of 
TUS 1999 data, both with model formula 1 + Gender + Age + Education 

 
 Linear method Multiplicative method 

250835101204N =

STRATUM

3.002.001.00

G
_W

E
IG

12

10

8

6

4

2

0

-2
250835101204N =

STRATUM

3.002.001.00

G
_W

E
IG

12

10

8

6

4

2

0

-2

 
 
 
The survey data file TUS99-XD DATA.sav can easily be merged with the two output files (both called 
WEIGHTS.sav at exit of g-CALIB-S, but renamed immediately), since all files are sorted by CASE on 
exit of g-CALIB-S. This allows constructing various scatter diagrams, plotting the series of weights 
(G_WEIG for the linear method, and G_WEIG2 for the multiplicative method) against each other. A 
simple scatter diagram is in figure 5.2. Calibration variables can be used to constructs separate scatter 
diagram for different subpopulations. This might help to identify the “clusters” that appear to be 
present in figure 5.2. Obviously, many other data exploration techniques may be used to try to 
understand the data and the calibration results. This, however, is not the purpose of the present text. 
 
 

Fig 5.2 Comparison of 2 series of g-weights from individual-level 
calibration of TUS 1999 data, both with model formula  
1 + Gender + Age + Education, by means of a scatter diagram 
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V.D.2.ii Clustering: individual-level calibration using type 
~

, ,H d t+� �  data 

 
With the approach of the previous section, individuals belonging to the same household have different 
g-weights and calibrated weights, because they generally have different individual characteristics. In 
this section we impose the same estimated weight for individuals in the same household, irrespective 
of their individual characteristics. The clustering technique is applied to that end (section III.E.4). 

Hence, we have to solve calibration models of the type min ~ ;
~ ~ , ~ ~

d g H D g t g++ = ∈T T
BG� �" #Ω . Recall 

that the elements of the design matrix are averages of individual values within households; see table 
3.8 in section III.E.6.  
 
We have again tried the linear and the multiplicative method, with model formula 1 + Gender + Age + 
Education, as in the previous section. The results are in figure 5.3. The linear method still results into 
negative weights. The multiplicative method now gives quite extreme g-weights, compared with the 
results in the previous section. We therefore tried to restrict the g-weights even more, by using the 
logit method. Unfortunately, the method to find extreme lower and upper bounds (section II.C) has not 
been implemented yet. Some trial and error resulted into acceptable results for the logit method with 
lower bound of 0.0 and upper bound of 8.0. The results are also shown in figure 5.3. 
 
 

Fig 5.3 Comparison of 3 series of g-weights from individual-level calibration of TUS 
1999 data, all with model formula 1 + Gender + Age + Education, using 
clustering to impose equal g-weights within households 
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 Logit method with L = 0.0 and U = 8.0 

12711750691N =

STRATUM

3.002.001.00

G
_W

E
IG

10

8

6

4

2

0

-2

 



  

 –  105  – 

V.D.2.iii Household-level calibration using type Z d s,
~

,� �  data 

 
Household characteristics used for calibration at household-level are: 
 

� Household size, or HHsize (1, 2, 3, 4, 5+; calibration variables ZS1 to ZS5); 
� Age of RP, or RPage (<30, 30-39, 40-49, 50-59, 60-69, 70+; calibration variables: ZA1 to 

ZA6); 
� Education of RP, or RPeduc (LO or unknown, LMO, HMO/VS, HOBU, UNI; calibration 

variables: ZE1 to ZE5). 
 
Calibration variables in TUS99-ZD DATA.sav and TUS99-ZD TOTALS s.sav are: ZX0, ZS1 to ZS5, 
ZA1 to ZA6 and ZE1 to ZE5; no variables representing joint effects of the above three variables are 
constructed. Again geographical stratification is in STRATUM; initial Phase I sampling weights are in 
WEIGHT; and some more variables are present in TUS99-ZD DATA.sav, such as PROV and MONTH 
which could both be used to define calibration strata (or calibration variables). 
 

The calibration models being applied are of the form min
~ ~ ;

~~ , ~ ~
d g Z Dg s gT T

BG� �" #= ∈Ω .  The linear, 

the multiplicative and the linear truncated method have been applied. The bounds in the latter method 
were L = 0.01 and U = 5.0. The model formula in all three models was 1 + HHsize + RPage; RPeduc 
had to be omitted because of missing values for the corresponding calibration variables. The 
distributions of the resulting series of g-weights are shown in figure 5.4. 
 
The linear method again results into negative weights, which is undesirable. The multiplicative 
method has apparently given bad results: there are (surprisingly) many extreme g-weights, which was 
already seen in the previous section, but which is here even more striking. Surprisingly, the truncated 
linear method allowed restricting the range of g-weights to the interval [0.01, 5.0]. It can also be 
noticed that convergence of the truncated linear method was very slow: respectively 24, 38 and 34 
iterations were needed for calibration strata (regions) 1 to 3. 
 
The logit method with g-weight range [0.01, 5.0], failed for stratum 1, but converged in only 6 
iterations for strata 2 and 3. The results are not that much different from those resulting from the 
truncated linear method (strata 2 and 3). 
 
 

Fig 5.4 Comparison of 3 series of g-weights from household-level calibration of TUS 
1999 data, all with model formula 1 + HHsize + RPage 
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 Truncated linear method with L = 0.01 and U = 5.0 
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V.D.2.iv Simultaneous two-level calibration using type V d u,
~

,� �  data 

 
Finally, calibration in this section is using both individual-level and household-level auxiliary 
information. The calibration variables are, combining the situations in the previous three sub-sections: 
the constant variable ZX0, HHsize indicators ZS1 to ZS5, RP’s age indicators ZA1 to ZA6, and 
variables X0, S1 to S2, A1 to A6, and E1 to E6, which are similar to the variables with the same 
names in sections V.D.2.i-ii, but instead of being indicator variables (for individuals) they are now 
counting the number of household members in the corresponding categories of the underlying 
qualitative calibration variables. The calibration models applied in this section are of the form 

min
~ ~ ;

~~ , ~ ~
d g

Z

H
Dg

s

t
gT

T

T BG	 
 ���
�
��

=
�
��
�
�� ∈

�
��
��

�
��
��

Ω ; see also table 3.8 for more details, and for comparison with 

the methods of the previous sections. 
 
Henceforth, we are now ready to calibrate on individual and household information simultaneously. 
We start with the linear method and model formula 1 + HHsize + RPage + X0 + Gender +Age + 
Education. (We cannot write 1 for X0, since the term considered is the number of members for each 
household; Gender, Age and Education have an similarly modified interpretation, as already stated in 
the preceding paragraph. This, actually, is the difference between design matrices 

~H  and H; see table 
3.8.) Figure 5.5 shows the results. These are clearly not useful, as there are too many negative g-
weights (and calibrated weights). 
 
Several alternative models can be tried, in order to improve the pattern of estimated g-weights in 
figure 5.5. Of course, there are the multiplicative, the logit and the truncated linear method to force 
positive estimates for weights. But other model formulae too may work in finding weighting schemes 
with less negative weights. Figure 5.6 shows the estimated g-weights corresponding to 4 calibration 
models, all with model formula 1 + HHsize + X0 + Gender. This is done for illustration here; no other 
argument justifies these calibration models. Again slower convergence of the truncated linear method 
for stratum 1 may be notified. 
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Fig 5.5 g-Weights from two-level calibration of TUS 1999 data, using 
the linear method with model formula  
1 + HHsize + RPage + X0 + Gender +Age + Education 
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The model formula 1 + HHsize + X0 + Gender has reduced auxiliary information to 1 household 
characteristic and 1 individual characteristic. Obviously, only household characteristics, or only 
individual characteristics could be used within the same two-level calibration framework. If only 
household characteristics are used, the results will be exactly as in section V.D.2.iii. On the other 
hand, if only individual characteristics would be used, then we would not get the same results as in 
section V.D.2.ii. This is true because the objective function in the mathematical programming problem 
is different: the weights in the weighted sum of distance measures are different in the two approaches; 
the calibration constraints however are equivalent. Results are not presented here to illustrate these 
features. 
 
 



  

 –  108  – 

Fig 5.6 Comparison of 4 series of g-weights from two-level calibration of TUS 1999 
data, all with model formula 1 + HHsize + X0 + Gender 
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 Logit method Truncated linear method  
 with L = 0.0 and U = 7.0 with L = 0.01 and U = 5.0 

12661730685N =

STRATUM

3.002.001.00

G
_W

E
IG

7

6

5

4

3

2

1

0

-1

 

12661730685N =

STRATUM

3.002.001.00

G
_W

E
IG

6

5

4

3

2

1

0

-1

 
 

 
 
 



  

 –  109  – 

V.E CALIBRATION OF THE TRAVEL SURVEY (TS) 

 
V.E.1 Introduction 

 
We can use the Travel Survey (TS) 2000 to illustrate not only the efficiency of g-CALIB-S, but also 
several other aspects related to calibration. It is clear that an extensive calibration study for this survey 
can be carried out, similar to what has been initiated here before for the Time Use Survey (TUS). 
Indeed, data and tools are now ready to try out one-level and two-level calibration, using many 
individual-level and household-level characteristics. This, however, is not what will be focussed on in 
the next sub-sections. 
 
During the last 12 months, other aspects of the TS have been investigated, and a lot of time and energy 
has been put in establishing an integrated system to process this survey. This work is not finished yet, 
but advantage can be already taken now from at least two features of this integrated system: 
 

� When the sample is designed, sampling information such as stratification variables and 
sampling fractions are stored in a systematic way in SPSS data files; the definition of strata is 
archived in SPSS syntax files. 

� A text file contains enough information for all sampled individuals and households about 
their willingness to participate, and effective participation, in the TS, together with basic 
characteristics, asked for in the questionnaire. This file is available at any time, once data 
collection and data coding have started. Its name for the 2nd trimester is 
t.i11.B23A.T0002.D071200. 

 
In the next sub-section we will see that a sample of households is selected for each trimester. In this 
study we restrict ourselves to calibration for the 2nd trimester. We will illustrate how the input files for 
g-CALIB-S can efficiently be prepared, taking full advantage of the above mentioned features of the 
current survey process for the TS at Statistics Belgium. Calibration itself, and discussion of results 
from different calibration models, is limited for this survey; we want to stress the fact that a lot of 
flexibility (with respect to calibration) is reached once an efficient integrated system is set up. 
 
One thing that is currently still slowing down the production of calibrated weights and calibration 
estimates of totals of survey variables for the TS, is access to external sources. This problem needs to 
be tackled soon. A solution for the TS will clearly also be useful for other surveys where calibration 
has to be done. Generally speaking, it is a problem of integrating various databases – both registers 
and survey databases – in a single reference database. 
 
 
V.E.2 The sampling design 

 
The sampling design for the TS 2000 has deliberately been kept very simple. This is because, at the 
end of 1999, we felt the need for a thorough study of all aspects of this survey. Simplicity makes it 
possible to estimate variances within the generalised calibration framework. This in turn allows to 
evaluate the precision of calibration estimators of study variables, and hence to evaluate the quality of 
the survey. Decisions could then be drawn regarding a possible redefinition of the sampling design, if 
necessary. In this study, we do not go that far, but I believe the fundamentals now have been 
established to start that kind of quality study. Calibration is definitely an important intermediate step in 
the production of high-quality estimates. 
 
It was decided to draw 4 samples of households, corresponding to the 4 trimesters. Households 
selected for a particular trimester receive the questionnaire by ordinary mail right after the trimester is 
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finished. They are kindly asked to complete the form about their travel experiences (both for leisure 
and for business) in the preceding trimester. 
 
In this report, I have only used data for the 2nd trimester to illustrate various aspect of – or related to – 
calibration. The sampling design is STR-SRS, or stratified simple random sampling, of households. 
The sampling frame is a list of administrative private households, constructed from the National 
Register dated 1/1/2000. The stratification variables for the 2nd trimester are: 
 
� REGION: distinguishing the major geographical areas Brus-Brux, Vlaanderen and 

Wallonie; 

� PROV: distinguishing the 10 Belgian provinces and the Brussels Metropolitan Area (or 
Brus-Brux); PROV is a refinement of REGION; 

� AGESIZ: a combination of age of reference person (RP) of a household and household 
size, with the following 17 categories: 

o 1 = “<25 & 1p” 2 = “<25 & 2+” 
o 3 = “25-39 & 1p” 4 = “25-39 & 2p” 5 = “25-39 & 3p”

 6 = “25-39 & 4+” 
o 7 = “40-54 & 1p” 8 = “40-54 & 2p” 9 = “40-54 & 3p”

 10 = “40-54 & 4+” 
o 11 = “55-64 & 1p” 12 = “55-64 & 2p” 13 = “55-64 & 3p”

 14 = “55-64 & 4+” 
o 15 = “65+ & 1p” 16 = “65+ & 2p” 17 = “65+ & 3+” 

 
A priori sampling fractions for the 11 × 17 = 187 sampling strata are ranging from 1/1000 to 1/200; 
the overall sampling fraction is 1/524, corresponding to about 8204 initially sampled households. 
Sampling fractions do not vary by PROV within REGIONs. Larger non-response rates (from 
experience in the 1st trimester) in some strata (e.g. in Brus-Brux, for smaller households and for 
younger RPs) are taken into account. 
 
The definition of stratification variables, from basic variables in the household sampling frame is 
stored as SPSS syntax. A SPSS data file, called DESIGN_STRATA.sav (187 records), contains the 
stratification variables, a stratum identification, and for each stratum or record the number of 
households in the sampling frame and the number of households selected from the frame. From the 
latter two variables the sampling fractions, and hence the sampling weights, can be recalculated. 
 
 
V.E.3 Preparing input files for g-CALIB-S 

 
Two SPSS syntax files are constructed to transform basic data on sampled (responding and non-
responding) individuals/households in the above mentioned text file t.i11.B23A.T0002.D071200 and 
from the sampling information file DESIGN_STRATA.sav into a household respondent file, and 
finally into a survey data input file for g-CALIB-S. The two syntax programs, 
TS_PrepareRespondingHH.sps and TS_MakeHHDesignMatrix.sps, are reproduced in appendix 
VII.B. I believe these are very interesting files, showing how from basic data g-CALIB-S’s input files 
can be prepared. The programs are important study material, for potential users of g-CALIB-S. It is 
demonstrated in these syntax programs how the construction of the survey data input file can be stored 
in well-structured and well-documented computer programs. Once such programs exist, it is relatively 
easy to modify the syntax when the calibration model has to be changed. This may be necessary for 
several reasons: new auxiliary information may become available, other calibration variables will be 
used, one wants to switch from household-level calibration to individual-level calibration, or 
calibration will be on both household and individual level simultaneously. Last but not least, and this 
is exactly my proper recent experience, the programs may have to be adapted to available series of 
calibration totals. The latter is still the weakest point in these programs, but if in the future external 
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databases (from registers or surveys) will be more easily accessible, then we will certainly be able to 
improve the programs, probably setting up finally a more standardised and complete set of data 
transformation programs. 
 
These programs are called in a SPSS Production Facility job. The starting window and prompts 
window are as below. The input files are the files as mentioned earlier. Notice that the macros in g-
DESIGN.sps are used (in the second program) to construct the design matrix for calibration. The 
output files are indicated as the “Sample of responding HHs” and the “Survey data input file for g-
CALIB-S”. Notice that the second file also contains the sampling weights. 
 
 

 
 
 
At the end of the job, an additional file named TS-CalTotStructure.sav is created, by aggregating the 
survey data input file for g-CALIB-S on the calibration stratum variable STRATUM. Sample totals of 
calibration variables in the latter file are produced this way. This information is useful to detect empty 
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classes, which should then have to be treated further manually, in order to avoid problems when 
calibration is performed. More importantly, the sample totals in TS-CalTotStructure.sav can simply be 
replaced with appropriate calibration totals. The new file is then the calibration totals input file for g-
CALIB-S. Interestingly, we prepared a lot of calibration variables in the survey data input file, and 
consequently also had these calibration variables in TS-CalTotStructure.sav. However, only for 2 
underlying calibration variables the calibration totals were easily available (actually from 
DESIGN_STRATA.sav!), so that only a minority of cells could be filled with a calibration total; the 
other cells had to be emptied! This doesn’t cause a problem for g-CALIB-S, as long as calibration 
variables with empty cells are not selected in the calibration model. 
 
Another interesting feature of the data transformation programs is that (detailed) response information 
can easily be produced from now on. As an example, consider the table below, produced by the first 
program when sampling information from DESIGN_STRATA.sav is included and statistics are 
printed to file in order to be able to inspect the results of the first part of the data transformation. 
 
 

Province – Brussels = Antwerpen  
RP-age - 
HH-size 

combinatio
n 

Nbr. of 
HHs in the 

HH's 
population 

stratum 

 Nbr. of 
HHs in the 

HH's 
sample 
stratum 

 STR-SRS 
Sampling 
weight of 

the HH 

 

 Mean Valid N Mean Valid N Mean Valid N 
0-24  1p 9678 N=1 23 N=1 420.78 N=1 
0-24  2+ 6512 N=2 9 N=2 723.56 N=2 
25-39 1p 50328 N=33 118 N=33 426.51 N=33 
25-39 2p 39179 N=8 37 N=8 1058.89 N=8 
25-39 3p 35428 N=17 33 N=17 1073.58 N=17 
25-39 4+ 56770 N=21 53 N=21 1071.13 N=21 
40-54 1p 40856 N=21 57 N=21 716.77 N=21 
40-54 2p 43434 N=21 43 N=21 1010.09 N=21 
40-54 3p 43423 N=23 43 N=23 1009.84 N=23 
40-54 4+ 72351 N=38 72 N=38 1004.88 N=38 
55-64 1p 26035 N=17 46 N=17 565.98 N=17 
55-64 2p 51049 N=39 89 N=39 573.58 N=39 
55-64 3p 16866 N=21 30 N=21 562.20 N=21 
55-64 4+ 9188 N=7 16 N=7 574.25 N=7 
65+   1p 81786 N=47 82 N=47 997.39 N=47 
65+   2p 83586 N=78 146 N=78 572.51 N=78 
65+   3+ 15702 N=17 28 N=17 560.79 N=17 

 
 
This is only one out of 11 such tables, for the province of Antwerpen, but it shows clearly that 
response rates can easily be produced now; “Valid N” stands for the number of responding 
households. A bit more work on the programs is required to include the production of response 
information in the calibration preparation step. Thus, the programs might become useful (data mining) 
tools for the survey manager who needs to follow up response behaviour and data collection. It simply 
implies that the text file mentioned earlier (t.i11.B23A.T0002.D071200 for the 2nd trimester) should be 
available and be consulted frequently. 
 
The calibration variables that can finally be used, because the corresponding calibration totals are in 
the calibration totals file, are X0, AGE1 to AGE5 (for age classes of RP, called AgeRP5 hereafter) and 
HHS1 to HHS2 (1 resp. 2 or more persons in the household, called HHsize2 hereafter). Notice that the 
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data are of type Z d s,
~

,� � , as in section III.E.3. The calibration models are of type 

min
~ ~ ;

~~ , ~ ~
d g Z Dg s gT T

BG� �" #= ∈Ω . See table 3.8. The maximal design matrix corresponds to the 

model formula 1 + AgeRP5 + HHsize2.  
 
 
V.E.4 Calibration results 

 
For illustration we have retained 6 models: 
 
� Model 1 : linear method and model structure 1 + AgeRP5 + HHsize2 
� Model 2 : multiplicative method and model structure 1 + AgeRP5 + HHsize2 
� Model 3 : truncated linear method, with L = 0.0 and U = 1.5, and model structure 1 + AgeRP5 + 

HHsize2 
� Model 4 : logit method, with L = 0.0 and U = 2.5, and model structure 1 + AgeRP5 + HHsize2 
� Model 5 : multiplicative method and model structure 1 + AgeRP5 
� Model 6 : multiplicative method and model structure 1 + HHsize2 
 
 

Fig 5.7 Comparison of 4 series of g-weights from household-level calibration of TS 
2000 data (trimester 2), all with model formula 1 + AgeRP5 + HHsize2 
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 Logit method Truncated linear method  
 with L = 0.0 and U = 2.5 with L = 0.0 and U = 1.5 

15331544N =

STRATUM

3.002.00

G
_W

E
IG

3.0

2.5

2.0

1.5

1.0

.5
15331544643N =

STRATUM

3.002.001.00

G
_W

E
IG

1.6

1.4

1.2

1.0

.8

.6

.4

 
 
 



  

 –  114  – 

The results (estimated g-weights) are in figures 5.7-9. The results for models 1 to 3 are very similar. 
This is confirmed by the 3D scatter in figure 5.8, which could be constructed easily after merging the 
survey data input file with the three (renamed) output files WEIGHTS.sav for models 1 to 3. The line 
segments in this graph are called “spikes” and connect each (x,y,z) data point (corresponding to a 
household) in the g-weight space with the origin. The fact that many spikes coincide indicates that 
most data points are on the line x = y = z of equal g-weights from the three models. 
 
 
 
 

Fig 5.8 Comparison of 3 series of g-weights from household-level 
calibration of TS 2000 data, all with model formula  
1 + AgeRP5 + HHsize2, by means of a 3D scatter diagram 
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Some problems were encountered with the logit method (model 4). First, several different pairs (L, U) 
were tried, but the calibration failed for calibration stratum 1 (REGION Brus-Brux). We don’t see 
why, at this moment. Second, it is strange that the U-value had to be increased from 1.5 under the 
truncated linear method to 2.5 under the logit method. The theory in section II.C, however, indicated 
that extreme values for L and U are independent of the distance or calibration function. We have 
currently no explanation, so that further research is necessary, possibly resulting in improvements to 
our software g_CALIB-S. 
 
We then omitted one of the terms in the model formula (and used the multiplicative method 
invariably): the new models are models 5 and 6, for which the estimated g-weights are plotted in 
figure 5.9. Comparing models 5 and 6 with model 2 seems to indicate that HHsize2 has minor effect 
on the g-weights in calibration stratum 3 (REGION Wallonie), while AgeRP5 has minor effect only in 
calibration stratum 2 (REGION Vlaanderen). This kind of calibration model comparisons has to be 
studied further, and formal statistical tests should be implemented in calibration practice. 
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Fig 5.9 Comparison of 2 series of g-weights from household-level calibration of TS 
2000 data (trimester 2); multiplicative method 
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Finally, for all models 1 to 6, the scale parameters φ  for the three calibration strata were estimated 
from the data (variable X0). Hence the g-weights are always with respect to the scaled sampling 
weights. Therefore, the g-weights do not reflect to correction for non-response, but merely the effect 
of sampling error. The estimates for φ  however can be interpreted as estimated reciprocal response 
rates, globally within the three calibration strata. This is true because the initial weights are the true 
sampling weights. The respective values are 2.24841, 2.02310 and 2.23724. These are indeed 
comparable with the reciprocal overall response rate of 8,204/3,720 = 2.20538, or a response rate of 
45.34%. 
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V.F GENERALISED RAKING OF CROSS-CLASSIFICATIONS OF LABOUR VOLUME AND 
LABOUR COMPENSATION 

 
V.F.1 The problem 

 
In this section, we discuss generalised calibration for cross-tabulations of labour volume of employees, 
labour volume of self-employed people and compensation of employees by branch of industry 
(BRANCH), gender (SEX) and level of education (EDUC). 
 
Our aim in this report is merely to illustrate generalised calibration technology, so the reader is asked 
not to consider the figures here below as being final. 
 
The National Accounts (NA-1997) are providing an appropriate breakdown by BRANCH (NACE 
classification), but a breakdown by SEX and EDUC is not available from this source. The labour force 
survey (LFS) carried out by Statistics Belgium, however, provides a breakdown by all three variables. 
The data on labour volume of employees and of self-employed people are shown in tables 5.2 and 5.3. 
The row (SEX-EDUC) totals, from the LFS, will be calibration totals. The NA’s labour volume 
distribution by BRANCH, adjusted for the LFS’s total labour volume, will serve as a series of 
calibration totals by BRANCH; the figures are in the last row in each table. 
 
 

Table 5.2 Labour volume of employees (×103) by BRANCH, SEX and EDUC; breakdown 
from LFS, with breakdown by BRANCH from NA 

 
 BRANCH  
SEX 

EDUC 
A+B C+D+E F G+H+I J+K other Total 

Male        
Lower 6.63 270.65 107.75 245.45 56.87 180.24 867.59 

Middle 4.69 192.13 59.18 125.24 24.26 77.67 483.17 
Higher 1.08 112.66 14.17 65.42 92.29 214.96 500.58 

Female               
Lower 2.74 92.71 5.14 142.5 65.04 239.45 547.58 

Middle 1.57 43.9 1.61 68.78 22.11 119.98 257.95 
Higher 0.17 46.42 3.48 50.72 59.19 361.41 521.39 

Total 16.88 758.47 191.33 698.11 319.76 1193.7 3178.3 
% from NA 0.64% 21.69% 5.66% 21.74% 10.39% 39.88% 100% 
Adjust. NA 20.21 689.44 179.93 690.89 330.32 1267.47 3178.3 
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Table 5.3 Labour volume of self-employed (×103) by BRANCH, SEX and EDUC; 
breakdown from LFS, with breakdown by BRANCH from NA 

 
 BRANCH  
SEX 

EDUC 
A+B C+D+E F G+H+I J+K other Total 

Male        
Lower 35.72 15.37 31.66 81.18 12.45 10.45 186.82 

Middle 18.15 10.99 22.92 49.14 4.12 6.98 112.29 
Higher 3.16 8.08 5.06 28.21 43.92 38.13 126.56 

Female               
Lower 19.07 4.6 1.65 63.17 7.52 15.39 111.39 

Middle 6.25 2.5 0.64 22.61 1.8 13.82 47.62 
Higher 2.73 3 1.1 21.45 15.6 32.26 76.13 

Total 85.07 44.54 63.02 265.75 85.42 117.02 660.82 
% from NA 8.71% 4.53% 6.66% 28.63% 34.04% 17.43% 100% 
Adjust. NA 57.53 29.95 44.02 189.22 224.93 115.16 660.82 

 
 
Data on “compensation” of employees are found in table 5.4. For compensation, the situation 
concerning availability of data is a bit more difficult then for labour volume. As for labour volume, 
(percentage) breakdown of compensation by BRANCH is still available in the NA 1997 : relative and 
absolute figures are in the last two rows of table 5.4. The European Structure of Earnings Survey 
(SES-1995) provides a breakdown of wages, which are only one component of compensation, by 
BRANCH, SEX and EDUC, but restricted to NACE C to K branch of industry. To complete table 5.4, 
i.e. to fill in the initially empty columns “A+B” and “other”, and to transform wages into 
compensation, the following procedure is followed. 
 
SES 1995 also gives the corresponding (restricted) breakdown of average wage (wage per employee). 
For each class of industry (C+D+E, F, G+H+I, J+K) we calculate the relative average wage, and an 
un-weighted average of these 4 relative distributions of wage per employee is then obtained. For 
classes “A+B” and “other” of BRANCH we find overall average compensation by dividing total 
compensation of employees in these classes (from NA, i.e. 12.0 and 1525.0, resp.) by the 
corresponding total labour volumes (as found from LFS’s total labour volume and NA’s percentage 
distribution of labour volume, i.e. 3178.3 × 0.64 % = 20.21 for “A+B” and 3178.3 × 39.88 % = 
1267.47 for “other”; see table 5.2). The average distribution from the other 4 classes was applied to 
these two figures, in order to complete the cross-classification of average wages in BRANCH classes 
“C+D+E”, “F”, “G+H+I” and “J+K” and (imputed) average compensation in BRANCH classes 
“A+B” and “other” by all three classification variables. Finally, averages are transformed into 
(estimated) totals through multiplication with labour volume estimates as found in table 5.5 panel A 
(first part: estimated labour volume for employees). These are the data in table 5.4. 
 
Calibration totals by BRANCH are in the last row of table 5.4. There are no calibration totals 
corresponding to SEX and EDUC for these data on labour compensation. Hence the marginal column 
in table 5.4 is not completed. 
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Table 5.4 Compensationa of employees (×109 BEF) by BRANCH, SEX and EDUC; 
breakdown from LFS, with percentage breakdown by BRANCH from NA 

 
 BRANCH  
SEX 

EDUC 
A+B C+D+E F G+H+I J+K other Total 

Male        
Lower 3.79 236.82 70.26 195.92 55.98 192.29 - 

Middle 3.18 189.40 45.10 118.73 33.87 97.92 - 
Higher 1.10 166.30 17.20 94.85 161.31 403.14 - 

Female              
Lower 0.99 52.85 2.95 76.01 34.85 159.10 - 

Middle 0.73 30.64 1.01 43.98 20.64 104.26 - 
Higher 0.11 42.30 2.47 48.03 67.38 434.02 - 

Total 9.90 718.30 138.98 577.52 374.02 1390.73 - 
% from NA 0.27% 24.73% 4.93% 21.01% 14.87% 34.19% 100% 
Abs. (NA) 12.00 1103.00 220.00 937.00 663.00 1525.00 4460.00 
a “Compensation” means: wage for BRANCH categories C-K, and (imputed) 
compensation for other BRANCH categories. 

 
 
V.F.2 Preparing the data 

 
Section III.C (sub-section III.C.3 in particular) points out how the cross-tabulations in tables 5.2-4 
must be transformed in order to create the input files for g-CALIB-S. We first constructed a SPSS file, 
called CROSSTABS.sav, as follows. Each record corresponds to a cell in one of the three tables. 
There are 5 columns (variables), called SEX, EDUC, BRANCH, LABOUR and TABLE. The first 
three variables are numerical versions of the three classification variables in the tables (with obvious 
integer-valued coding). The variable TABLE contains the table number (1, 2 or 3, resp. for tables 5.2, 
5.3 and 5.4). The variable LABOUR contains labour volumes, as in tables 5.2 and 5.3, or 
compensation, as in table 5.4. For example, the first record contains the data vector (1, 1, 1, 6.63, 1), 
and represents the first cell in table 5.2; similarly for the 36 × 3 – 1 = 107 other records. Hence, 
CROSSTABS.sav contains the above tables in appropriate column format. 
 
A SPSS syntax program, TRANSFORM CROSSTABS.sps, is reproduced in appendix VII.D.1: it uses 
the macros in g-DESIGN to transform the cross-tabulation in column format (CROSSTABS.sav) into 
an appropriate survey data input file for g-CALIB-S. Notice that the variable TABLE becomes the 
calibration stratum variable STRATUM, and LABOUR becomes the initial weights variable 
WEIGHT. A case identification (CASE) is constructed from the variables TABLE, EDUC, SEX and 
BRANCH. The output file is called COLLAPSED_DATA.sav, and will serve as survey data input file 
for g-CALIB-S. 
 
The calibration totals are stored in TOTALS.sav, which has a structure that is similar to that of 
COLLAPSED_DATA.sav. The values were copied from an Excel workbook (which was used for 
preliminary exploration of the data) into TOTALS.sav. There are missing values in this calibration 
totals file: the third record, corresponding to TABLE=3, or calibration STRATUM=3, contains no 
values for the calibration variables corresponding to SEX and EDUC, but only for the calibration 
variables corresponding to BRANCH. For the other two tables (or calibration strata) the records are 
complete. This peculiarity can easily be dealt with by g-CALIB-S : in one run tables 1 and 2 will be 
calibrated, and in another run table 3 is calibrated. 
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V.F.3 Application of generalised raking 

 
We then applied the raking method to our data, i.e. a generalised calibration model with an 
exponential calibration function F (the “multiplicative” method). The appropriate model formula for 
the data on labour volume in tables 5.2 and 5.3 is 1 + BRANCH + SEX*EDUC (or 1 + BRANCH + 
SEX + EDUC + SEX.EDUC), and the model formula for the data on labour compensation is simply 1 
+ BRANCH. As explained in the previous section, this needs two separate runs of g-CALIB-S. We 
have instructed the calibration software to calculate the scale parameter, separately for each table (or 
calibration stratum), from the data, using the calibration variable X0 with constant value 1. In the first 
run, the input parameters for g-CALIB-S are set as follows: 
 
 

Parameter 
(macro name) 

Value Comment 

@WORKDIR C:\Actuaris_stage\Cases\Anja\  
@XDATA Collapsed_Data.sav  
@CALTOT Totals.sav  
@XVARS X0, B1 to B6, SE11 to SE23 1 + BRANCH + 

SEX*EDUC 
@STR_1 1 All 2 tables are estimated … 
@STR_N 2 … with this model formula 
@TYPE 2 i.e. Classical raking ratio 
@SCALE 0 Scale from the data (X0) 
@L 0.7 Not used since @TYPE = 2 
@U 1.5 Not used since @TYPE = 2 
@TOL 0.000001  
@ITERMAX 100  
@INFO N  

 
 
In the second run, the input parameters for g-CALIB-S are set as follows: 
 
 

Parameter 
(macro name) 

Value Comment 

@WORKDIR C:\Actuaris_stage\Cases\Anja\  
@XDATA Collapsed_Data.sav  
@CALTOT Totals.sav  
@XVARS X0, B1 to B6 1 + BRANCH 
@STR_1 3 Only table 3 is estimated … 
@STR_N 3 … with this model formula 
@TYPE 2 i.e. Classical raking ratio 
@SCALE 0 Scale from the data (X0) 
@L 0.7 Not used since @TYPE = 2 
@U 1.5 Not used since @TYPE = 2 
@TOL 0.000001  
@ITERMAX 100  
@INFO N  
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The estimated scale for each of the first two tables is 1.0, as expected; the estimated scale equals 
136.27 for TABLE 3. The numbers of iterations were 4, 6 and 4, resp. The estimated g-weights are 
shown graphically in figure 5.10. 
 
 

Fig 5.10 Estimated g-weights for labour volume of employees (“stratum” 1) and of 
self-employed (“stratum” 2), in left panel, and for labour compensation of 
employees, in right panel; generalised raking method; different model 
formulae 
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Next, for data on labour volume (strata 1 and 2), we applied the raking method with model formula 1 
+ BRANCH + SEX + EDUC, i.e. omitting the joint effect from SEX and EDUC. Applying this model 
is equivalent to classical raking in a 3-way cross-classification. The estimated g-weights for this 
slightly simplified model are in figure 5.11. Comparison of this graph with the one in the left panel of 
figure 5.10 may give some indication about the significance of the joint effect of SEX and EDUC on 
the estimated g-weights. Our software g-CALIB-S provides tables with summary statistics for the 
distributions of g-weights and calibrated weights within each calibration stratum, but these are not 
reproduced here. At first glance, there seems to be no significant joint effect from SEX and EDUC. 
We should perform formal (statistical) tests to draw firm conclusions with respect to significance of 
various terms in a calibration model formula. This, however, is not a topic of this study. 
 
 

Fig 5.11 Estimated g-weights for labour volume of employees 
(“stratum” 1) and of self-employed (“stratum” 2); 
generalised raking method; model formula 
1 + BRANCH + SEX + EDUC 
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V.F.4 Presentation of the results in cross-classification tables 

 
g-CALIB-S delivers the results of calibration in standard output files; see sections IV.B.2.iii-iv. For 
the present application on labour volume and labour compensation we have written a SPSS syntax 
program to produce cross-tabulations of g-weights and calibrated weights. The latter are the adjusted 
labour volume and labour compensation statistics the user will be interested in. The tables have the 
usual format; we present these on the next pages, without changing the layout. The program, 
ESTIMATES.sps is reproduced in appendix VII.D.2, for illustrative purposes; the program was 
included in the job calling g-PREPARE.sps and g-CALIB-S.sps (section IV.B.5). ESTIMATES.sps 
demonstrates how g-CALIB-S’s input and output files have to be merged to prepare output in a 
readable format. 
 
Comparison of tables 5.5 panel A and 5.6 confirms that the joint effect of SEX and EDUC is very 
small for the data on labour volume (“strata” 1 and 2). 
 
This application (of g-CALIB-S) was an unusual one: the study variable (here: labour 
volume/compensation) is involved in the calibration through the (initial) weights, and cannot be 
separated from the auxiliary variables (gender, education, branch of industry). Otherwise stated: 
generalised raking in cross-classifications can be solved by means of our software g-CALIB-S, but it 
does fit merely artificially into the generalised calibration framework based on (aggregated) individual 
observations. As illustrated here, the power of software like g-CALIB-S partly lies in the flexibility to 
change easily from one model (formula) to another. 
 
Finally, it is noteworthy that percentage distributions were involved as calibration benchmarks. Our 
software does not (yet) allow working with relative distributions directly, so that absolute distributions 
are to be prepared beforehand by the user, and stored in the calibration totals input file. The SAS 
macro CALMAR can work directly with percentage distributions. This is related to the fact that the 
original variables are automatically transformed into indicator variables in CALMAR. 
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Table 5.5 Panel A  Estimated labour volume (×103 BEF)  for employees (“stratum” 1), labour volume (×103 BEF)  for self-employed 

(“stratum” 2); generalized raking method; model formula: 1 + BRANCH + SEX*EDUC 
 
Estimated contingency table (CALWEI in table format) 
STRATUM 1.00  

     BRANCH      Table 
Total 

     1.00 2.00 3.00 4.00 5.00 6.00  
     Sum Sum Sum Sum Sum Sum Sum 

SEX 1.00 EDUC 1.00 CALWEI 8.06 246.95 101.84 248.88 61.23 200.64 867.59 
   2.00 CALWEI 5.78 177.76 56.72 128.76 26.48 87.67 483.17 
   3.00 CALWEI 1.26 98.49 12.83 63.55 95.19 229.26 500.58 
 2.00 EDUC 1.00 CALWEI 3.18 80.72 4.64 137.88 66.82 254.35 547.58 
   2.00 CALWEI 1.82 38.18 1.45 66.48 22.69 127.32 257.95 
   3.00  .19 39.20 3.04 47.60 58.98 372.37 521.39 

Table 
Total 

 CALWEI   20.28 681.30 180.52 693.15 331.39 1271.62 3178.26 

 
Estimated contingency table (CALWEI in table format) 
STRATUM 2.00  

     BRANCH      Table 
Total 

     1.00 2.00 3.00 4.00 5.00 6.00  
     Sum Sum Sum Sum Sum Sum Sum 

SEX 1.00 EDUC 1.00 CALWEI 24.88 11.57 22.42 63.48 49.96 14.52 186.83 
   2.00 CALWEI 13.95 9.12 17.91 42.39 18.24 10.70 112.30 
   3.00 CALWEI 1.06 2.92 1.72 10.61 84.77 25.48 126.56 
 2.00 EDUC 1.00 CALWEI 12.45 3.24 1.10 46.29 28.28 20.04 111.40 
   2.00 CALWEI 4.08 1.76 .42 16.58 6.77 18.00 47.62 
   3.00  1.12 1.33 .46 9.89 36.91 26.43 76.14 

Table 
Total 

 CALWEI   57.54 29.95 44.03 189.23 224.94 115.16 660.85 
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Table 5.5 Panel B  Estimated labour compensation (×109 BEF)  for employees (“stratum” 3); generalized raking method;  

model formula: 1 + BRANCH 
 
Estimated contingency table (CALWEI in table format) 
STRATUM 3.00  

    BRANCH     Table 
Total 

    1.00 2.00 3.00 4.00 5.00 6.00  
    Sum Sum Sum Sum Sum Sum Sum 

SEX 1.00 EDUC 1.00 CALWEI 4.59 363.65 111.21 317.87 99.23 210.85 1107.41 
   2.00 CALWEI 3.85 290.83 71.39 192.63 60.04 107.37 726.12 
   3.00 CALWEI 1.33 255.36 27.22 153.89 285.94 442.06 1165.81 
 2.00 EDUC 1.00 CALWEI 1.20 81.15 4.67 123.32 61.77 174.46 446.58 
   2.00 CALWEI .88 47.05 1.60 71.36 36.59 114.33 271.80 
   3.00 .13 64.95 3.91 77.93 119.44 475.92 742.28 

Table 
Total 

 CALWEI  12.00 1103.00 220.00 937.00 663.00 1525.00 4460.00 

a  STRATUM = 3.00 
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Table 5.6 Estimated labour volume (×103 BEF)  for employees (“stratum” 1), labour volume (×103 BEF)  for self-employed (“stratum” 
2); generalized raking method; model formula: 1 + BRANCH + SEX + EDUC 

 
Estimated contingency table (CALWEI in table format) 
STRATUM 1.00  

     BRANCH      Table 
Total 

     1.00 2.00 3.00 4.00 5.00 6.00  
     Sum Sum Sum Sum Sum Sum Sum 

SEX 1.00 EDUC 1.00 CALWEI 8.06 246.94 101.96 248.74 61.13 200.50 867.34 
   2.00 CALWEI 5.75 176.83 56.49 128.02 26.30 87.15 480.54 
   3.00 CALWEI 1.27 99.11 12.93 63.92 95.66 230.57 503.46 
 2.00 EDUC 1.00 CALWEI 3.18 80.81 4.65 137.95 66.79 254.46 547.83 
   2.00 CALWEI 1.84 38.60 1.47 67.16 22.90 128.61 260.58 
   3.00  .19 39.01 3.03 47.34 58.61 370.32 518.51 

Table 
Total 

 CALWEI   20.28 681.30 180.52 693.15 331.39 1271.62 3178.26 

 

Estimated contingency table (CALWEI in table format) 
STRATUM 2.00  

     BRANCH      Table 
Total 

     1.00 2.00 3.00 4.00 5.00 6.00  
     Sum Sum Sum Sum Sum Sum Sum 

SEX 1.00 EDUC 1.00 CALWEI 24.45 11.41 22.53 62.02 48.22 14.05 182.68 
   2.00 CALWEI 13.32 8.75 17.49 40.26 17.11 10.06 107.00 
   3.00 CALWEI 1.16 3.20 1.92 11.51 90.84 27.37 136.01 
 2.00 EDUC 1.00 CALWEI 13.03 3.41 1.17 48.19 29.08 20.66 115.55 
   2.00 CALWEI 4.58 1.99 .49 18.50 7.47 19.89 52.92 
   3.00  1.00 1.19 .42 8.74 32.22 23.13 66.69 

Table 
Total 

 CALWEI   57.54 29.95 44.03 189.23 224.94 115.16 660.85 
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V.G GROSSING-UP THE STRUCTURAL BUSINESS SURVEY (SBS) ON ENTERPRISES 

 
V.G.1 The problem 

 
The main purpose of the present section is to study the currently used extrapolation technique for the 
Structural Business Survey (SBS) on enterprises, carried out at Statistics Belgium since 1995. Our 
ultimate goal is to verify whether this technique can be treated as a special application of the 
generalised calibration framework. We’ll see in section V.G.3 that this indeed is possible, which then 
opens the way to more sophisticated calibration methods and amelioration of the weighting scheme, as 
proposed in section V.G.4. Interestingly, this application deserves some special attention, due to the 
presence of over-coverage, as explained in sections V.G.3-4. Care should therefore be taken, 
especially when several calibration models are being compared. 
 
We have chosen the 1998 SBS to work out theoretical aspects, as well as to illustrate our findings 
numerically. However, numerical results as such should not be used, or compared with published 
figures. So we have reduced the presentation of statistics on SBS variables in this text to an absolute 
minimum. 
 
The central statistical unit in our study is the enterprise; see Communautés Européennes (1993). 
 
Statistics Belgium has set up a database on business activity, wherein the legal unit is the basic entity. 
This database is called DBRIS, for Banque de Données des Redevables de l’Information Statistique, 
and is up-dated regularly using information from tax registers (i.e. VAT register, and IPCALART = 
Impôt des Personnes Physiques – Calcul des Articles) and information from the social security 
services (i.e. ONSS-RSZ or Office National de la Sécurité Social – Rijksdienst voor Sociale Zekerheid, 
and INASTI-RSVZ or Institut National d’Assurances Sociales des Travailleurs Indépendants - 
Rijksdienst voor Sociale Verzekering van Zelfstandigen).  Thus, DBRIS is an integrated database, 
based on several external databases. The SBS too, although being a sample-based survey, is used to 
correct and extend information in DBRIS, whenever this is considered necessary. From DBRIS is 
constructed yearly a population of enterprises, which is used as the sampling frame for the SBS. This 
is a complex matter, and important to understand the specificities of the SBS, but the description of it 
is beyond the scope of this text. 
 
The sampling frame is definitely not the target population in the SBS. Under- as well as over-
coverage is present, and appropriate means are to be taken to correct for the resulting non-sampling 
errors. We’ll see that this implies a quite special supplementary computational step, to be carried out 
before generalised calibration can be applied. 
 
I had to work on two tables, one for the sampling frame (called UNIVERS98), and one for the sample 
(called ECHANTILLON), stored in an MS Access database. Only a few variables, relevant for the 
present study, were selected for these tables from the original data files. An overview is given in table 
5.7. The third column gives the new name I have assigned to the variables in SPSS syntax programs 
and data files. 
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Table 5.7  Variables used in this study, and included in the MS Access tables 
 

Field in MS Access tables Description New SPSS 
name 

 

ECHANTILLON 
 

NBR_ENT_TOTAL Number of enterprises in the stratum 
(h) to which the enterprise (k) belongs, 
from the sampling frame (i.e. Nh   for 

all  k Fh∈ ; see elsewhere for 
notations) 

NBR_FRAM 

NBR_ENT_ECHAN Number of enterprises in the stratum 
(h) to which the enterprise (k) belongs, 
from the sample (i.e. nh   for all  

k sh∈ ) 

NBR_SAMP 

POIDS_ENT The final weight ( wk ), as currently 
calculated 

POIDS_EN 

NACEBEL NACE 4 code (4 digits) NACE4 
CLASSE_III Classification by TO and ONSS size 

class (see tables 6.* and 6.$) 
CLSS_III 

STATUT_SUIVI 4-digitcode containing information 
about response / non-response, 
activity, why activity stopped, … on 
sampled units 

STAT_SUI 

 

UNIVERS98 
 

NACEBEL_REGROUPE 4 or 5-digit codes for NACE category NACE_GR 
CLASSE_IMPORTANCE ONSS size classification CLSS_IMP 
CA_DECL_TVA Turnover, from tax register  
REVENU_INASTI Turnover, from IPCALART, as 

reported to INASTI 
REV_INAS 

CLASSE_III Classification by TO and ONSS size 
class 

CLSS_III 

 
 
A variable TO is derived from CA_TVA and REV_INAS, and measures turnover of the enterprise. 
TO is used to construct one of the (post-) stratification variables. 
 
CLSS_IMP is a classification variable, based on the size of the enterprise, measured as the number of 
salaried employees. It is a classification as used by ONSS. Table 5.8 presents the definition of 
CLSS_IMP. 
 
From TO (turnover) and CLSS_IMP (ONSS size classification) is constructed the variable CLSS_III, 
as given in table 5.9. CLSS_III is a (post-) stratification variable. 
 
The second (post-) stratification variable is NACE4, which, in the sample, is derived from NACE_GR. 
The values of NACE4 are not presented here. 
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Table 5.8  ONSS size classification CLSS_IMP 
 

CLSS_IMP Number of salaried employees 
0 Enterprise is not in the ONSS data base 

(there are no salaried employees) 
1 1 – 4 
2 5 – 9 
3 10 – 19 
4 20 – 49 
5 50 – 99 
6 100 – 199 
7 200 – 499 
8 500 – 999 
9 1000 - ∞ 

 
 
 

Table 5.9  The variable CLSS_III, as constructed from TO and CLSS_IMP 
 

CLSS _III 
 TO (MIO Bef) 

CLSS_IMP < 20 20 - 50 50 - 100 100 - 200 200 + 
0 0 1 2 3 4 
1 1 1 2 3 4 
2 2 2 2 3 4 
3 3 3 3 3 4 
4 4 4 4 4 4 
5 5 5 5 5 5 
6 5 5 5 5 5 
7 5 5 5 5 5 
8 5 5 5 5 5 
9 5 5 5 5 5 

 
 
 
 
 
Based on the variable STAT_SUI, sampled enterprises are classified into 5 categories. The resulting 
variable is called NRStatus, since it has to do much with the status of the enterprise as respondent or 
non-respondent. NRStatus is described (not defined) in table 5.10. By “full activity” is meant that the 
enterprise existed during the entire survey year (1998). 
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Table 5.10  Classification NRStatus of sampled enterprises 
 

NRStatus Description 
A The sampled enterprise belongs to the target population, and is 

a respondent with full activity in the survey year 
B The sampled enterprise belongs to the target population, but is 

a non-respondent, since no or too bad information is available, 
although there was full activity in the survey year 

C The sampled enterprise does not belong to the target 
population, but did respond 

D The sampled enterprise could not be contacted (no information 
about activity in the survey year is available) 

E The sampled enterprise had incomplete activity in the survey 
year (and belongs to the target population), but did not respond 

 
 
This classification is splitting up the sample into five (mutually exclusive and exhaustive) sub-

samples: s s s s s sA B C D E= ∪ ∪ ∪ ∪ . The situation is schematically clarified by means of figure 5.12 
on the next page. 
 
 
V.G.2 The sampling design 

 
Stratified simple random sampling (STR-SRS) is used for the SBS. The sampling strata are denoted h 
h H= 1,...,� � , and are the (non-empty) cells in a complete cross-classification of enterprises by the 

stratification variables CLSS_III and NACE4. This stratification can be considered in the target 
population U and in the sampling frame F, as well as in the initial sample, its 5 sub-samples, and the 
respondent sample. The table below introduces appropriate notation: 
 
 

 
 

Target 
population 

Sampling 
frame 

Initial 
sample 

Respondent 
sample 

Stratum h Uh  Fh  sh  rh  

Stratum size Nh
U  Nh  nh  mh  

Union and total U   and  N U  F   and   N s  and   n r   and   m 
 
 
Notice that the respondent sample r is simply the sub-sample s A . 
 

If sub-samples, such as s A , are restricted to a particular stratum h, then we write sh
A . To simplify 

notation we write sh
AB  for s sh

A
h
B∪ , etc. 

 
For STR-SRS, it is easy to derive the first- and second-order inclusion probabilities (based on the 
sampling frame counts!): 
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Therefore, the sampling weights are: d
N

n
k Fk k

h

h
h= = ∈−π 1 for . The simple formula for the second-

order inclusion probabilities is useful to calculate variance estimates, as discussed in section III.G; see 
also section IV.C.2.vii. 
 
 

Fig 5.12  The relationship between the SBS sample s, with its 5 sub-samples, and the target 
population U and sampling frame F 
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Non-sampled enterprises 

Under-coverage of the sampling frame 

O
ver-coverage of the sam

pling fram
e

 

 
 
 
Initial sample sizes are calculated from sampling frame sizes and sampling fractions fh  as follows: 

n N fh h h= × . Some sampling fractions, for large enterprises (i.e. in CLSS_III categories 4 and 5) are 
set equal to one, such that sampling is exhaustive in sampling strata that contain large enterprises. 
Other sampling fractions are between 1/100 and ½, depending on the size of the strata and the 
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variability of turnover in the strata. Notice that the final values for the sample sizes are obtained by 
rounding calculated sizes N fh h× . 
 
We have retained N = 385,931 enterprises from the frame for our illustrative analysis. There should be 
n = 37,673 enterprises in the initial sample; there are finally m = 32,918 enterprises in the respondent 
sample r s A= . Those enterprises are distributed over H = 2,011 strata, in the data files we are 
presently using. 
 
 
V.G.3 Understanding current extrapolation practice 

 
In many surveys, study variables are of different types, and the SBS is no exception. So we should 
first specify for which type of variables we want to get calibration estimates of totals. This is usually 
having an impact on the formulae for extrapolation. We restrict ourselves in this study to variables y 
such as turnover, various costs, etc; the relevance of this becomes clear when we explain the formula 

for current extrapolation. The total t yy k
k U

=
∈
∑  has to be estimated. Notice that we consider the total 

for the target population, not for the sampling frame. Only values yk , observed for responding 

enterprises k s A∈ , can be used , so that grossing-up is from the respondent sample s A  to the target 

population U. The calibration estimator is: �t w yy k k
k s A

=
∈
∑ , where wk  is the calibrated weight, to be 

estimated from a suitable calibration model. The form of the wk  will depend on the type of study 
variable chosen. 
 
Up to now, calibration for the SBS is essentially traditional complete post-stratification (with an 
additional correction for over-coverage). The post-strata are simply equal to the sampling strata. 
Conditions Cond 1-3 in section III.B.1 are thus satisfied, so that the practical conclusions Pc 1-4 can 
be taken into account in our discussion of extrapolation practice for the SBS. 
 
The post-strata are equal to the sampling strata. This has two major disadvantages: (1°) no estimates 
can be obtained if the sample doesn’t contain responding enterprises; (2°) the resulting weights are 
likely to be unstable. One tries to avoid (1°) by making the SBS compulsory, but non-empty 
respondent samples within all post-strata can still not be guaranteed. Notice that, given that Cond 1-3 
are satisfied, the post-stratified (or calibration estimator based on post-stratification) can be written as 

a sum of independent estimators within post-strata: � �t t w yy yh
h

k k

k sh h
A

= =∑ ∑∑
∈

. 

 

The formula used to calculate the weights wk  for enterprises k in the restriction r sh h
A=  of the 

respondent sample to the post-stratum h is: 
 

 w
N

n

n n
n

n
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n

n

n n
n

n
k

h

h
A

h
A

h
B h

E

h
ABCE k

h

h
A

h
A

h
B h

E

h
ABCE=

+ +
=

+ +
2 2 . (V.3) 

 
 
The following reasoning can be built up to justify this formula. 
 
Think first of the two-step grossing-up procedure in the simple situation where r s F U⊂ ⊂ = , where s 

is a SRS from F and no coverage problems are met. Grossing up of the observed total yk
k r∈
∑  (non-

weighted because of SRS) is first from the respondent sample r to the initial sample s by 
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multiplication with the factor 
n

m
 and next from the initial sample to the target population U by 

multiplication with 
N

n
. Hence: �t y

N

n

n

m
yy k

k r
k

k r

= =
∈ ∈
∑ ∑ . Notice the similarity with (V.3), but the 

latter formula includes an additional correction factor, which must be due to the complexity of the 
SBS situation. Indeed the additional factor is due to coverage problems, as we now explain step by 
step. 
 
Step 0 Hypothesis: under-coverage exists, but has a small (ignorable) effect on estimates (negative 

bias on estimates of totals of non-negative variables). Hence we assume that the sampling 
frame F completely covers the target population U, or U F⊂ . And no correction for under-
coverage has to be included therefore. 

 
Step 1 Calculate the (non-weighted) average of y over the sub-sample sh

A : the result is yh
A. The total 

of y for sh
A  is n yh

A
h
A , simply the observed total. 

 
Step 2 Hypothesis: within the population of enterprises with activity during the whole year, non-

response is completely at random, i.e. yh
A also applies to sh

B . Hence the total for sh
AB  is 

estimated as n n yh
A

h
B

h
A+� � . 

 
Step 3 Hypothesis: a reasonable estimate for the average of y for enterprises that have not been 

active during the whole survey year is yh
A 2. Hence the total for sh

ABE  is estimated as 

n n y n y n n
n

yh
A

h
B

h
A

h
E

h
A

h
A

h
B h

E

h
A+ + = + +

�
��

�
	
� � 2

2
. Notice that sh

ABE  is the contact sample in the 

target population. 
 
Step 4 Hypothesis: the contact rate among enterprises in the target population is equal to the 

contact rate among enterprises which are out-of-scope, and therefore equal to the contact rate 
among all enterprises, either inside or outside the target population. This contact rate (within 

the target population) is therefore estimated as 
n n

n

n

n
h h

D

h

h
ABCE

h

−
= .  The reciprocal of this 

estimated contact rate is used to up-weight the total in step 3 to the set 
s U s F Uh h h h h∩ = \ \� �, which is that part of the initial sample sh  that is contained in the 

target population. The resulting estimated total for s Uh h∩  thus equals n
n n

n

n
yh

h
A

h
B h

E

h
ABCE h

A
+ +

2 . 

 
Step 5 Now, the inclusion probability for sampled elements in the target population is the same for 

those outside the target population, i.e. 
n

N
h

h

. Therefore up-weighting the total for s Uh h∩  in 

step 4 to the total for the target population Uh  results into N
n n

n

n
yh

h
A

h
B h

E

h
ABCE h

A
+ +

2 . 

 
The nature of the study variable y has become important in step 3. It is clear that the reasoning cannot 

be applied to, for instance, the variable y ≡ 1, whose total to be estimated is the number Nh
U  of 

enterprises in the target population Uh . 
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Steps 4 and 5 are quite subtle. It may be easier, and less confusing, to explain the up-weighting 

procedure in terms of 
~

~
n

n
h
ABCE

h

 instead of 
n

n
h
ABCE

h

, and 
~

~
N

n
h

h

 instead of 
N

n
h

h

, where the tilde (~) denotes 

restriction to the target population. However, ~nh , for instance, cannot be determined, since elements in 

the non-contact sample sh
D  cannot be identified as being inside or outside the target population. In 

other words, we don’t know the size of s Uh
D

h∩ . That’s why we have to make the assumptions in 
steps 4 and 5, so that not the “tilded” sizes themselves, but the ratios of “tilded” sizes can be replaced 
by estimated ratios based on observable (sub-) sample (and sub-population) sizes. 
 
The resulting estimator for the total t yh  of the variable y in stratum h can be written in several ways, in 

order to make the step by step up-weighting explicit, and finally in order to write it in a “generalised-
calibration-like” form: 
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 (V.4) 

 
The last expression justifies formula (V.3), if  
 

  g
n

n

n n
n

n
k

h

h
A

h
A

h
B h

E

h
ABCE

* =
+ +

2 ,    for all k sh
A∈ . (V.5) 

 
 
V.G.4 Toward generalised calibration 

 
Now, consider another study variable z, and suppose that z is constant within post-stratum h, i.e. 

assume zk =1  for all k sh
A∈ . Assuming further that z is a variable of the same type as variable y in the 

previous section, we get: 
 

 �

* *
( )

*t d g z d g N
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h
B h
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∈ ∈
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It might happen that zk =1  for all k sh
A∈ , not just for a particular post-stratum h, but for all post-strata 

h = 1, …, H. Then: 
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However, (V.6) and (V.7) should not be misunderstood as estimates for Nh
U  and Nh , respectively, as 

argued already in the previous sub-section. The only purpose of introducing the constant variable z and 
setting its value equal to 1, is to move on to the generalised calibration model here below. 
 

A possible correct interpretation follows from rewriting (V.6) as 
N

n
n n

nh

h
ABCE h

A
h
B h

E

+ +
�
��

�
	
2

, interpreting 

n n
n

h
A

h
B h

E

+ +
2

 as a measure for total “relevant activity” in sh
ABCE , which is then up-weighted to the 

sampling frame (in post-stratum h) through multiplication with the factor 
N

n
h

h
ABCE

. By “relevant” we 

mean that activity of enterprises that are in the sampling frame but not in the target population is not 
considered, and that enterprises (in the target population) with incomplete activity are considered as 
enterprises with only half as much activity as enterprises with full activity. Hence 

N
N

n
n n

n
h

h

h
ABCE h

A
h
B h

E
* = + +

�
��

�
	
2

 will be interpreted as an estimate of total activity in the sampling frame 

(restricted to post-stratum h). It is important to remark that all this is justifiable only in the context of 
estimating study variables of the type as considered in the previous sub-section. 
 

In the sequel we call the measures Nh
*  the adjusted (population) post-stratum sizes (as adjustments of 

the sampling frame post-stratum sizes Nh , in the context of estimating study variables of the type as 
considered in the previous sub-section). 
 
We now consider the following generalised calibration problem: 
 
� The sub-sample of elements for which observations on y are available, and which can therefore be 

up-weighted, is the respondent sample s A . 

� Calibration variables are the post-stratum indicator variables: δh  (h = 1, …, H), with values 

δkh =1  if k sh
A∈  and 0 otherwise. (Such indicator variables resemble the variable z considered 

here before!) The calibration vector for enterprise k is thus xk k kH
T= δ δ1,...,	 
 . 

� Calibration totals are the adjusted post-stratum sizes N N
n n

n

n
h h

h
A

h
B h

E

h
ABCE

* =
+ +

2  ( h H=1,..., ) . 

� Initial weights are d
N

nk
h

h

=  for k sh
A∈ , and for all h = 1, …, H. 

� Then, one has to find g-weights gk  ( k sh
A∈ ), such that d g Nk k

k s

kh h
A∈

∑ =δ * . We also add the 

additional constraint that the g-weights are constant within each post-stratum. 
 
The solution to this generalised calibration problem is exactly as in (V.5). For the above-mentioned 
class of study variables y the target population total t y  can then be estimated as follows: 
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This proves that the extrapolation technique currently used in the SBS at Statistics Belgium can be 
formulated as a generalised calibration problem. Notice that we have a very special calibration 
problem here: complete post-stratification, with post-strata that coincide with the sampling strata. No 
distance function had to be chosen, but if we want to use our software g-CALIB-S, then any distance 
function G (or calibration function F) may be used. The linear method is the most economical choice, 
since then no iteration is required. 
 
 
V.G.5 Generalised calibration for the SBS in the future 

 
It should now immediately be clear that other auxiliary information could be integrated into the 
calibration problem, i.e. that the current complete post-stratification problem can, quite 
straightforward, be extended to a generalised calibration problem. A more general form of the 
calibration vector, still incorporating the post-stratum indicator variables, for element k is 

1 1 1, ,..., , ,...,δ δk kH p

T
x x� � , with corresponding vector of calibration totals N N N t tH p

T* * *, ,..., , ,...,1 1� � , 

where N Nh
h

* *= ∑ , and known x-totals t j  (for the target population). The user should however have 

our discussion in the previous paragraphs in mind, and calculate carefully meaningful calibration 
totals: the type of study variables for which ultimately the total has to be estimated is of utmost 
importance. 
 
Of course, if the calibration problem is not post-stratification anymore, then the sampling weights 
should be taken into account. 
 
To demonstrate that calibration totals should be prepared carefully, just consider the above formula 

N Nh
h

* *= ∑ , for computing the calibration total corresponding to the constant calibration variable 1. 

One might suggest to calculate this total as N
n n

n

n
N

A B
E

ABCE

+ +
=2 ** , similar to the way of computing 

the calibration benchmarks Nh
* . However, generally N **  will not be equal to N * , so that, if N **  

were used together with the Nh
* , consistency of the calibration equations would be lost. Equality 

N Nh
h

* *= ∑  precisely implies consistency when N *  is used together with the Nh
* . 

 
As seen before, complete post-stratification corresponds to the cross-tabulation of enterprises by 
variables NACE4 (which has a lot of categories!) and CLSS_III (with 6 categories). Alternative 
calibration models will then immediately be clear: calibration could be on the margins in the cross-
classification (together with calibration on other x-totals), or on the same margins and on counts 
corresponding to regrouped cells in the table (together with calibration on other x-totals), etc. See 
section III.B.2 for a discussion of incomplete post-stratification techniques. Some of these models are 
applied now to the SBS data for survey year 1998. 
 
In order to prepare for application of the complete post-stratification model NACE4*CLSS_III = 1 + 
NACE4 + CLSS_III + NACE4.CLSS_III, but at the same time also for lower-order models 1, 1 + 
NACE4 and 1 + CLSS_III (see section III.A.1 for interpretation of these model formulae), one should 
calculate all calibration benchmarks as sums of those for the cells (h) in the complete cross-
classification by NACE4 and CLSS_III. This is to satisfy numerical consistency. 
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The choice of the distance function is completely up to the statistician, with the consequence that this 
choice will affect the g-weights. 
 
All this shows that generalised calibration is a very efficient framework, by means of which 
alternative, and probably more sophisticated calibration techniques become fairly obvious. The result 
is that auxiliary information can be used in an optimal way; finally pointing to an efficient 
extrapolation scheme that provides stable calibration weights (and g-weights) for the SBS. An in-depth 
study of weighting schemes SBS based on generalised calibration methodology will probably be the 
topic of a forthcoming paper. 
 
 
 
V.G.6 Some results 

 
For numerical illustration, I have decided to select a small, manageable, part of the data. Only 

enterprises in NACE1 category 4 are selected. In our respondent sample s A  we then have only 3806 
enterprises, classified within 21 NACE4 categories and 6 CLSS_III categories, as shown in table 5.11. 
Notice that some NACE4 × CLSS_III cells (post-strata) are empty in the respondent sample s A . 
 
It took a significant amount of time to prepare, from the Access tables discussed in section V.G.1, the 
input files for g-CALIB-S. The last part of the data transformation procedure only is interesting in the 
context of this study. This last part is mainly performed by the syntax program SBS_g-DESIGN.sps, 
which can be found in section VII.E.1. Preparation of the input file Ultim Resp (A) Sample.sav was in 
fact more time consuming then writing the program SBS_g-DESIGN.sps and doing (manually) the 
very last data preparations. The file Ultim Resp (A) Sample.sav could be considered a (standard, at 
least for the SBS) survey data file, from which preparatory work for creating the input files for g-
CALIB-S would start. This survey data file contains enough information for each enterprise in a single 
record. Population information is included too, e.g. the number of enterprises in the sampling strata to 
which the enterprise considered belongs. Such information allows calculating sampling design 
parameters, such as the sampling fractions, sampling weights, etc. Moreover, based on survey 

variables it is possible to classify sampled enterprises immediately in one of the sub-samples s A , … or 

sE , so that in each record we can also include the numbers nh
A , … and nh

E , where h is the sampling 
(or post-) stratum to which the enterprise belongs. Given the presence of all this information, it is then 
finally possible to calculate the adjusted frame sizes, i.e. the calibration totals needed for our analysis. 
 
The purpose of SBS_g-DESIGN.sps is to transform the “basic” data file Ultim Resp (A) Sample.sav 
into appropriate input files for g-CALIB-S. The reader is asked to study the program in appendix 
(section VII.E.1). It is included for illustration, and can be useful as a starting point in new 
applications. In particular, it shows how the macros for constructing the design matrix are used. The 
last part of the program (after the matrix module) will be more confusion at first sight. As indicated in 
comments in the syntax itself, a table containing the calibration totals will have to be constructed. This 
table, extended with marginal calibration totals, is reproduced here as table 5.12. It contains the 
calibration totals for the post-stratification model 1 + NACE4 + CLSS_III + NACE4. CLSS_III, as 
well as for all its sub-models (e.g. 1 + NACE4). Given the structure of the survey data input file SBS 
Survey data.sav, which is completely constructed by the syntax itself, it is then not too difficult to 
construct also the calibration totals input file SBS Cal-totals.sav. Some commands at the end of the 
syntax program are intended to be helpful in that respect. Notice that the calibration totals in table 5.12 
satisfy numerical consistency. 
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Table 5.11 Cross-classification of 3806 enterprises in s A , by NACE4 
and CLSS_III 

 
  CLSS_III  

Numberin
g of 

NACE4 
categories NACE4 0 1 2 3 4 5 Total 

1 4010     31 2 33 
2 4020  1 1 1 7 1 11 
3 4030 1 1  1   3 
4 4100   1  19 2 22 
5 4511 21 21 16 26 29 6 119 
6 4512 12 8 1 5 4  30 
7 4521 62 159 106 122 466 218 1133 
8 4522 13 62 27 28 42 7 179 
9 4523 9 15 14 31 105 47 221 

10 4524 2  1 2 12 7 24 
11 4525 44 53 19 24 43 22 205 
12 4531 68 89 33 33 105 40 368 
13 4532 6 4 3 5 15 10 43 
14 4533 54 116 43 43 103 24 383 
15 4534 10 3 2 3 10 6 34 
16 4541 12 42 15 7 22 1 99 
17 4542 66 141 58 56 96 16 433 
18 4543 34 35 11 16 32 2 130 
19 4544 34 82 27 25 72 18 258 
20 4545 22 9 5 6 12 3 57 
21 4550 5 3 2 3 6 2 21 

 Total  475 844 385 437 1231 434 3806 
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Table 5.12 Calibration totals, i.e. adjusted frame sizes, appropriate for 
applying the maximal model NACE4 * CLSS_III 

 
  CLSS_III  

Numbering of
NACE4 categories NACE4 0 1 2 3 4 5 Total 

1 4010     31.0 2.0 33.0 
2 4020  1.0 3.0 1.0 7.0 1.0 13.0 
3 4030 2.0 2.0  2.0   6.0 
4 4100   7.0  19.0 2.0 28.0 
5 4511 748.0 393.0 109.0 59.9 29.0 6.0 1344.9 
6 4512 32.0 19.0 4.0 7.0 4.0  66.0 
7 4521 3685.6 3486.5 1136.3 554.4 473.0 219.0 9554.8 
8 4522 1043.0 1327.8 245.0 114.0 44.0 7.0 2780.8 
9 4523 466.8 297.8 126.0 139.0 107.0 49.0 1185.6 

10 4524 29.5  18.0 13.0 12.0 7.0 79.5 
11 4525 2952.1 1214.7 191.8 111.0 46.0 22.0 4537.6 
12 4531 4194.4 1776.5 353.0 145.0 108.5 41.0 6618.4 
13 4532 459.5 97.3 35.0 22.0 15.0 10.0 638.8 
14 4533 3776.8 2394.5 451.4 182.0 104.0 25.0 6933.7 
15 4534 779.0 105.0 35.0 14.0 10.0 6.0 949.0 
16 4541 843.0 808.0 127.0 26.0 22.0 1.0 1827.0 
17 4542 4215.3 2777.8 532.0 228.0 97.0 16.0 7866.1 
18 4543 2030.9 790.9 144.0 66.0 34.0 2.0 3067.8 
19 4544 2324.3 1596.0 249.7 116.0 74.0 18.0 4378.0 
20 4545 1086.6 192.0 43.0 13.5 12.5 3.0 1350.6 
21 4550 9.0 8.0 6.0 6.0 6.0 2.0 37.0 

 Total  28677.8 17287.6 3816.3 1819.8 1255.0 439.0 53295.5 
 
 
We are then ready to apply g-CALIB-S. The complete post-stratification model can be applied by 
setting the parameters through the interface of g-CALIB-S as follows: 
 

Parameter 
(macro name) 

Value Comment 

@WORKDIR C:\Actuaris_stage\Cases\JeanMarie\  
@XDATA SBS Survey data.sav  
@CALTOT SBS Cal-totals.sav  
@XVARS X0, NACE4_01 to NACE4_21, 

CLAS_0, CLAS_1, CLAS_2, 
CLAS_3, CLAS_4, CLAS_4, 
N4CL001 to N4CL126 

1 + NACE4 + CLSS_III +  
NACE4 * CLSS_III 

@STR_1 1 There no calibration strata 
@STR_N 1   (i.e. STRATUM ≡ 1) 
@TYPE 1 Irrelevant for complete post-

stratification 
@SCALE 0 Estimated (from X0) 
@L 0.7 Not used since @TYPE = 1 
@U 1.5 Not used since @TYPE = 1 
@TOL 0.000001  
@ITERMAX 100  
@INFO N  
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With @XVARS as in the table, there are 141 calibration variables; for 3806 cases (enterprises); this 
results into a large data matrix. But g-CALIB-S did not have a problem calculating the g-weights etc. 
The scale was calculated as φ= 1245680120. , and the distribution of the g-weights is shown 
graphically in figure 5.13. (The graphs are automatically produced by g-CALIB-S.) The (few) extreme 
g-weights could be removed by application of a simpler model. The model without interaction effects 
between NACE4 and CLSS_III has been applied; the linear method was chosen. The results are 
displayed in figure 5.14. There are no negative weights, although the linear method was used, and no 
weights are to extreme. Hence there is no need to try another method, e.g. the multiplicative method to 
make weights positive. Nevertheless, we have applied the classical raking method, i.e. the 
multiplicative method with model formula 1 + NACE4 + CLSS_III, for illustration. The results for the 
raking model are displayed in figure 5.15. As expected, the results of the linear method and the 
multiplicative method, when the model formula is 1 + NACE4 + CLSS_III, are barely different.  
 
 

Fig 5.13 Distribution of g-weights and calibrated weights from application of the complete 
post-stratification model NACE4 * CLSS_III 
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Fig 5.14 Distribution of g-weights and calibrated weights from application of the LINEAR 
calibration method, with additive model formula 1 + NACE4 + CLSS_III 
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Fig 5.15 Distribution of g-weights and calibrated weights from application of the 
MULTIPLICATIVE calibration method, with additive model formula  
1 + NACE4 + CLSS_III (i.e. the raking method) 
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In table 5.13 we give summary statistics for the scaled weights – which are, of course, independent of 
the calibration method –, the g-weights and the calibrated weights, for the three models that have been 
applied. (The table is constructed from tables that are produced by g-CALIB-S; only minor work on 
layout was necessary, in order to bring various tables together.) Clearly, the calibration method (here: 
linear versus multiplicative) has virtually no effect on the (right) tail(s) of the distribution of the g- and 
calibrated weights. Exclusion of interaction effects from the model formula tends to have only a 
moderate effect on the distributions, for the data treated in this application. The main conclusion is that 
there is no need at all to stick with the complete post-stratification model for these data; and only 
slightly more stability is obtained by dropping the interaction effects from the model. The classical 
raking method thus seems to be an excellent technique for getting extrapolation coefficients for the 
SBS data. 
 
 

Table 5.13 Summary statistics for scaled weights, g-weights and calibrated weights under 
three calibration models, for SBS 1998 data (restricted to NACE1 category 4) 

 
Statistic Method Model formula Min Perc 

25 
Median Mean Perc 

75 
Max Std 

Dev. 
SCAWEI   1.25 1.25 4.95 14.00 21.13 66.77 19.21 
CALWEI Linear NACE4 * CLSS_III 1.00 1.02 4.39 14.00 19.96 80.23 19.83 

 Linear 1 + NACE4 + CLSS_III .83 1.02 4.42 14.00 20.48 79.78 19.74 
 Multipl. 1 + NACE4 + CLSS_III .86 1.02 4.42 14.00 20.48 79.95 19.74 

G_WEIG Linear NACE4 * CLSS_III .80 .81 .90 .91 .98 2.41 .11 
 Linear 1 + NACE4 + CLSS_III .67 .82 .89 .91 .99 1.32 .10 
 Multipl. 1 + NACE4 + CLSS_III .69 .82 .89 .91 .99 1.32 .10 

 
 
Finally, notice that g-CALIB-S’s various output files, containing estimated weights, can easily be 
merged, so that detailed graphical displays can be produced, allowing more detailed comparison of 
different weighting schemes. I believe it is worth searching for a bit more automation in producing 
such results. It would offer more flexibility – and more speed – in the process of studying different 
potential weighting methods. In other words, g-CALIB-S, together with such complementary tools, 
would provide a lot of support to the subject matter statistician who has to come up finally with a 
reliable weighting scheme, which is only possible after thorough evaluation and comparison of (many) 
possible alternatives. 
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This work (on calibration) is not finished! I believe that a good start has been made in several ways, 
two of which are: understanding generalised calibration methodology, and setting up a powerful and 
flexible statistical tool and environment for calibration. However, calibration is only just one relatively 
small part of the entire survey process, and several other issues should be studied in a similar way. 
 
There were several reasons for writing this document on generalised calibration, such as: 
 
� Documenting current state-of-the-art in survey calibration and estimation methodology, and, at 

the same time, providing a sound starting point for an in-depth methodological study of each of 
our surveys at Statistics Belgium. 

� Bringing practice-oriented issues in generalised calibration together in a single document, which 
hopefully will serve as a guide in that phase of the survey process that has to do with 
extrapolation and estimation. 

� Providing a common framework for calibration, for all (or many?) kinds of surveys at Statistics 
Belgium; providing a common language and a common tool for all statisticians. 

� Initiation to our software g-CALIB-S. Since many people currently work in completely different 
ways and with different tools, working on its implementation will automatically result into an 
extremely critical evaluation of the software and, more generally, the methodology. 

 
Research in our statistical office should primarily be application-oriented, since our ultimate task is 
simply the production of figures. However, high-quality statistics necessitate a critical evaluation of all 
aspects over and over again. Appropriate statistical tools must therefore be introduced, such that the 
high demands for quality can be met in an optimal and contemporary way. We have to be prepared for 
step-by-step integration of more complex systems in our daily work, and this requires a good 
understanding of these tools and the methods behind them. So it will be clear that qualified people 
have to contribute in managing the implementation and use of such systems. This requires research 
and reflection! 
 
It is hoped that subject matter specialist and methodologists will co-operate closely in the near future, 
and elaborate on the implementation of generalised calibration methodology in a uniform way. 
Experience so far indicates that this is not the easiest part, since, among other things, databases are not 
immediately designed with calibration in mind, or since preceding phases of the surveys are not 
automated in such a way that directly useable data files are available. Software, system and database 
designers too will play an important role in successful implementation of the methodology. 
 
People outside our institute have shown their interest in these SPSS modules. Therefore, we decided to 
elaborate further on the development of these modules. We hope to be ready with a slightly extended 
version in the next few months. Our first goal is the implementation of a data management module that 
allows flexible integration of either individual-level or cluster-level auxiliary information, or both. 
Besides this, a user friendlier interface is envisaged too. 
 
I believe that this text demonstrates the power of mathematical formalism and abstraction. As soon as 
a basic, but sound mathematical framework is defined or discovered, new results will follow more 
easily, and existing techniques are likely to be more easily recognized merely as special instances of 
the same general method or model. A formal mathematical language (of calibration methodology) 
turns out to be a very efficient way of communication, (un)fortunately only possible to be “spoken” in 
written documents. I was often seduced by the attractiveness, excitement and efficiency of 
mathematical formulation and derivation. This partly explains why the numerical illustrations are 
rather limited in number and in length and thoroughness.  
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This work might give indications of future developments in survey methodology – especially its 
implementation – at Statistics Belgium. At the end the entire survey process should be an integrated 
system, wherein each step takes into account what has been or what will be going on in preceding or in 
subsequent steps. While working on different practical applications, I was always impeded in 
producing results, due to inconsistencies between results in one step and things that should be done in 
the light of calibration. One seemingly trivial, but no less fundamental problem is that variables used 
in different steps are not always compatible with variables to be used in subsequent steps, or that 
variables used in preceding steps are often not easily understood. This is true for the variable’s values, 
but also for their description. Consequently, we should strive working on (the same) basic files as 
much as possible, in each step of the survey process. In other words, the number of basic files should 
be reduced to an absolute minimum. Transformations of basic data files and databases, be they survey 
step specific or subject matter specific, should be archived as well-documented computer programs 
(SQL, SPSS syntax, …), rather than as supplementary data files. 
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VII.A SPSS® GENERALISED CALIBRATION MODULES 

 
VII.A.1 The core modules g-PREPARE.sps and g-CALIB-S.sps 

 
These syntax modules can be obtained from the author at the following address: 
 
 Dr. Camille VANDERHOEFT 
 Statistics Belgium 
 Rue de Louvain, 44 
 B-1000 Brussels 
 BELGIUM 
 
 e-mail: camille.vanderhoeft@statbel.mineco.fgov.be 
 
The software is developed under SPSS® 9.0 for Windows Base. We’ve run it also, with success, under 
SPSS® 8.0 for Windows Base, extended with the Advanced Statistics module that provides the matrix 
language. 
 
Write or mail to the above address for support too. 
 



  

 –  148  – 

VII.A.2 The auxiliary module g-DESIGN.sps 

 
****************************************************************************. 
* g_DESIGN.sps                                                             *. 
*                                                                          *. 
* Macros to construct the design matrix for a calibration model            *. 
*                                                                          *. 
* C. VANDERHOEFT & E. WAEYTENS  28/06/00                                   *. 
****************************************************************************. 
* Available macros :                                                       *. 
*  DesC1, DesC2, DesC3, DesC1Z, DesC2Z, DesC3Z                             *. 
****************************************************************************. 
 
*     DesC1 : creating indicator variable matrix for 1 categorical var. 
 
define DesC1(var=!tokens(1) / des=!tokens(1) / lab=!tokens(1)). 
compute !des = design(!var). 
compute !lab = make(1,ncol(!des),0). 
loop #J = 1 to ncol(!des). 
compute !lab(1,#J) = mmax(!var &* !des(:,#J)). 
end loop. 
print ncol(!des) / title='Macro DesC1 executed; number of columns created :'. 
!end define. 
 
*     DesC2 : creating indicator variable matrix for 2 categorical vars. 
 
define DesC2(var1=!tokens(1) / var2=!tokens(1) 
           / des=!tokens(1) / lab=!tokens(1) / p=!tokens(1)). 
compute #des1 = design(!var1). 
compute #des2 = design(!var2). 
compute !des = make(n,ncol(#des1)*ncol(#des2),0). 
compute !lab = make(1,ncol(!des),0). 
loop #I = 1 to nrow(!var1). 
compute !des(#I,:) = kroneker(#des1(#I,:),#des2(#I,:)). 
end loop. 
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loop #J = 1 to ncol(#des1). 
loop #K = 1 to ncol(#des2). 
compute #M = (#J-1)*ncol(#des2)+#K. 
compute !lab(1,#M) = mmax(10**!p * !var1 &* #des1(:,#J) 
                        +          !var2 &* #des2(:,#K)). 
end loop. 
end loop. 
print ncol(!des) / title='Macro DesC2 executed; number of columns created :'. 
!end define. 
 
*     DesC3 : creating indicator variable matrix for 3 categorical vars. 
 
define DesC3(var1=!tokens(1) / var2=!tokens(1) / var3=!tokens(1) 
           / des=!tokens(1) / lab=!tokens(1) / p=!tokens(1)). 
compute #des1 = design(!var1). 
compute #des2 = design(!var2). 
compute #des3 = design(!var3). 
compute !des = make(n,ncol(#des1)*ncol(#des2)*ncol(#des3),0). 
compute !lab = make(1,ncol(!des),0). 
loop #I = 1 to nrow(!var1). 
compute !des(#I,:) = kroneker(kroneker(#des1(#I,:),#des2(#I,:)),#des3(#I,:)). 
end loop. 
loop #J = 1 to ncol(#des1). 
loop #K = 1 to ncol(#des2). 
loop #L = 1 to ncol(#des3). 
compute #C = (#J-1)*ncol(#des2)*ncol(#des3) 
            +(#K-1)*ncol(#des3) 
            + #L. 
compute !lab(1,#C) = mmax(10**(2*!p)  * !var1 &* #des1(:,#J) 
                        + 10**!p      * !var2 &* #des2(:,#K) 
                        +               !var3 &* #des3(:,#L)). 
end loop. 
end loop. 
end loop. 
print ncol(!des) / title='Macro DesC3 executed; number of columns created :'. 
!end define. 
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*     DesC1Z : splitting up a quantitative var over categories of 1 var. 
 
define DesC1Z(var=!tokens(1) / zet=!tokens(1) / des=!tokens(1) / lab=!tokens(1)). 
compute !des = design(!var). 
compute !lab = make(1,ncol(!des),0). 
loop #J = 1 to ncol(!des). 
compute !lab(1,#J) = mmax(!var &* !des(:,#J) * 10). 
compute !des(:,#J) = !des(:,#J) &* !zet. 
end loop. 
print ncol(!des) / title='Macro DesC1Z executed; number of columns created :'. 
!end define. 
 
*     DesC2Z : splitting up a quantitative var over cells of 2 vars. 
 
define DesC2Z(var1=!tokens(1) / var2=!tokens(1) / zet=!tokens(1) 
            / des=!tokens(1) / lab=!tokens(1) / p=!tokens(1)). 
compute #des1 = design(!var1). 
compute #des2 = design(!var2). 
compute !des = make(n,ncol(#des1)*ncol(#des2),0). 
compute !lab = make(1,ncol(!des),0). 
loop #I = 1 to nrow(!var1). 
compute !des(#I,:) = kroneker(#des1(#I,:),#des2(#I,:)). 
end loop. 
loop #J = 1 to ncol(#des1). 
loop #K = 1 to ncol(#des2). 
compute #M = (#J-1)*ncol(#des2)+#K. 
compute !lab(1,#M) = mmax((10**!p * !var1 &* #des1(:,#J) + !var2 &* #des2(:,#K)) * 10). 
compute !des(:,#M) = !des(:,#M) &* !zet. 
end loop. 
end loop. 
print ncol(!des) / title='Macro DesC2Z executed; number of columns created :'. 
!end define. 
 
*     DesC3Z : splitting up a quantitative var over cells of 3 vars. 
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define DesC3Z(var1=!tokens(1) / var2=!tokens(1) / var3=!tokens(1) / zet=!tokens(1) 
            / des=!tokens(1) / lab=!tokens(1) / p=!tokens(1)). 
compute #des1 = design(!var1). 
compute #des2 = design(!var2). 
compute #des3 = design(!var3). 
compute !des = make(n,ncol(#des1)*ncol(#des2)*ncol(#des3),0). 
compute !lab = make(1,ncol(!des),0). 
loop #I = 1 to nrow(!var1). 
compute !des(#I,:) = kroneker(kroneker(#des1(#I,:),#des2(#I,:)),#des3(#I,:)). 
end loop. 
loop #J = 1 to ncol(#des1). 
loop #K = 1 to ncol(#des2). 
loop #L = 1 to ncol(#des3). 
compute #C = (#J-1)*ncol(#des2)*ncol(#des3) 
            +(#K-1)*ncol(#des3) 
            + #L. 
compute !lab(1,#C) = mmax(10**(2*!p)  * !var1 &* #des1(:,#J) 
                        + 10**!p      * !var2 &* #des2(:,#K) 
                        +               !var3 &* #des3(:,#L)). 
compute !des(:,#C) = !des(:,#C) &* !zet. 
end loop. 
end loop. 
end loop. 
print ncol(!des) / title='Macro DesC3Z executed; number of columns created :'. 
!end define. 
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VII.B SPSS SYNTAX FILES FOR THE HBS AND TUS 

 
VII.B.1 Syntax to prepare for calibration of TUS at individual, household, or integrated individual and household level 

 
*******************************************************************************. 
* Prepare_TUSdata.sps                                                         *. 
*******************************************************************************. 
* This syntax program prepares TUS 1999 data for calibration, taking Phase I  *. 
*  sampling weights (HBS 1999) into account.                                  *. 
*                                                                             *. 
* Survey data are prepared for different types of calibration:                *. 
*  - using individual auxiliary data (X,d,t) -> ind. g-weights                *. 
*  - using individual auxiliary data (H~,d+,t) -> restricted ind. g-weights   *. 
*  - using household auxiliary information (Z,d~,s) -> HH g-weights           *. 
*  - using ind. and HH aux. information ((Z|H),d~,(s'|t')') -> new HH g-wghts *. 
* (Calibration totals s and t are not created here.)                          *. 
*                                                                             *. 
* Two series (approximations) of sampling weights are available, but results  *. 
*  should be very close, since the series are close.                          *. 
*                                                                             *. 
* The sampling weights can be ignored!                                        *. 
*******************************************************************************. 
* Input files:  TBS-extractie.sav     (TUS 1998 and 1999 individual data)     *. 
*               SampleWeights.sav     (Phase I sampling weights HBS 1999)     *. 
* Auxil. files: TUS-1999.sav          (interm.: reduced TBS-extractie.sav)    *. 
*               SWeights-HBS99.sav    (red. SampleWeights., keyed and sorted) *. 
*               Duplicates.sav        (intermediate)                          *. 
*               TUS99- to Xd data.sav (ready to create design matrix)         *. 
*               TUS99- to Zd data.sav (ready to create design matrix)         *. 
*               TUS99-TEMP_H          (H,d~; erased)                          *. 
* Output files: TUS99-BasicInd.sav    (BASIC DATA: Ind. and HH information)   *. 
*               TUS99-Xd data.sav     (X,d   : for cal. at Ind. level)        *. 
*               TUS99-Hd data.sav     (H~,d+ : clustering, restricted cal.)   *. 
*               TUS99-Zd data.sav     (Z,d~  : for cal. at HH level)          *. 
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*               TUS99-Vd data.sav     (V,d~  : for cal. at Ind. + HH level)   *. 
*******************************************************************************. 
 
 
*     Store current environment variables. 
preserve. 
*     Reset environment variables. 
set mxmemory = 500000. 
set workspace = 200000. 
set mxloops = 35000.        /* Should be at least the number of observations. 
*     Load the macros for creation of design matrix. 
INCLUDE FILE = 'C:\803-bmcnew\Calibration\g_DESIGN\g-DESIGN.SPS'. 
 
 
*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$  SECTION 1  $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*. 
 
 
*******************************************************************************. 
* Start preparing basic individual auxiliary data TUS99-BasicInd.sav          *. 
*******************************************************************************. 
 
*   Explore TUS data file. 
 
GET FILE "C:\Actuaris_stage\Cases\TUS\TBS-extractie.sav". 
 
*** Year of interview (weekday and weekendday). 
 
STRING year1 year2 (A4). 
COMPUTE year1 = substr(agdatse,1,4). 
COMPUTE year2 = substr(agdatwe,1,4). 
FREQUENCIES VARIABLES=year1 year2. 
 
COMPUTE yrequal=0. 
IF (year1 = year2) yrequal=1. 
VARIABLE LABLES yrequal 'Are interview years equal?'. 
FREQUENCIES VARIABLES=yrequal. 
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*** Eliminate if one inteview day felt in 1998. 
 
SELECT IF (year1<>'1998' AND year2<>'1998'). 
CROSSTABS 
  /TABLES=year1  BY year2 
  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT . 
 
*** Check interview months. 
 
STRING month1 month2 (A2). 
COMPUTE month1 = substr(agdatse,6,2). 
COMPUTE month2 = substr(agdatwe,6,2). 
FREQUENCIES VARIABLES=month1 month2. 
CROSSTABS 
  /TABLES=month1  BY month2 
  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT . 
 
 
*   Prepare TUS 1999 respondent file for merging and save (renamed). 
 
SORT CASES BY men (A). 
SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS-1999.sav" /COMPRESSED. 
 
 
*   Prepare file with sampling weights: remove HHs with duplicate key (men). 
 
GET FILE="C:\Actuaris_stage\Cases\HBS\SampleWeights.sav". 
 
*** Construct HH number, as in TUS data file (of respondents). 
 
COMPUTE men = TRUNC(HBEno/1000). 
FORMATS men (F6). 
SORT CASES BY men (A). 
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SAVE OUTFILE="C:\Actuaris_stage\Cases\HBS\SWeights-HBS99.sav" 
    /COMPRESSED. 
 
*** Identify duplicates in key variable 'men'. 
 
COMPUTE duplic1 = (men=LAG(men,1)). 
VALUE LABELS duplic1 1 'Duplicate key values in MEN (HH number)'. 
FREQUENCIES VARIABLES=duplic1. 
 
SELECT IF (duplic1=1). 
SORT CASES BY men (A). 
SAVE OUTFILE="C:\Actuaris_stage\Cases\HBS\Duplicates.sav" 
    /KEEP=men duplic1 /COMPRESSED. 
 
MATCH FILES /FILE="C:\Actuaris_stage\Cases\HBS\SWeights-HBS99.sav" 
 /TABLE='C:\Actuaris_stage\Cases\HBS\Duplicates.sav' 
 /BY men. 
VALUE LABELS duplic1 1 'Excluded cases (HHs with duplicate key)'. 
FREQUENCIES duplic1. 
 
*** Delete cases with duplicate key MEN. 
 
SELECT IF (sysmis(duplic1)). 
 
 
*   Add sampling weights to TUS 1999 respondents. 
 
MATCH FILES /FILE="C:\Actuaris_stage\Cases\TUS\TUS-1999.sav" 
            /TABLE=* 
            /BY men. 
 
*** Eliminate HHs selected for HBS pilot survey (nov-dec 1998). 
 
SELECT IF (hbeno >= 300000). 
CROSSTABS 
  /TABLES=year1  BY year2 



  

 –  156  – 

  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT . 
FREQUENCIES VARIABLES=month1 month2. 
CROSSTABS 
  /TABLES=month1  BY month2 
  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT . 
 
*** Save final TUS Basic file, with responding individuals. 
*** Define overaal labels. 
 
VALUE LABELS oplgraad 1 "LO" 2 "LMO" 3 "HMO/VS" 4 "HNUO" 5 "UNI". 
SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS99-BasicInd.sav" 
    /DROP=agdatse,wcodeday,wd1 TO wd11,agdatwe,zcodeday,zd1 TO zd11, 
          year1,year2,yrequal,month1,month2,sector,taalrol,duplic1 
    /COMPRESSED. 
 
 
*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$  SECTION 2  $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*. 
 
 
*******************************************************************************. 
* Start preparing individual auxiliary data: TUS99- to Xd data.sav            *. 
*******************************************************************************. 
 
GET FILE="C:\Actuaris_stage\Cases\TUS\TUS99-BasicInd.sav". 
 
*** Create final auxiliary variables and complete dictionary. 
 
VARIABLE LABELS respnr "ID of Ind in HBS/TUS" 
                region "Region of residence of Ind's HH" 
                men    "HH ID in HBS/TUS (=cluster)" 
                sexe   "Sex of Ind". 
 
***** Month of participation (for HBS). 
COMPUTE month = TRUNC(men/10000)-2. 
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VARIABLE LABELS month "Month of interview (for HBS)". 
VALUE LABLES month 1 "Jan" 2 "Feb" 3 "Mar" 4 "Apr" 5 "May" 6 "Jun" 
                   7 "Jul" 8 "Aug" 9 "Sep" 10 "Okt" 11 "Nov" 12 "Dec". 
 
***** Age in 6 categories: AGE6. 
RECODE age (LOWEST thru 29 = 1) (30 thru 39 = 2) (40 thru 49 = 3) 
           (50 thru 59 = 4) (60 thru 69 = 5) (70 thru HIGHEST = 6) INTO age6. 
VARIABLE LABELS age6 "Age of Ind in 6 ctgrs". 
VALUE LABELS age6 1 "< 30" 2 "30-39" 3 "40-49" 4 "50-59" 5 "60-69" 6 "70 +". 
 
***** Rename education variable. 
RENAME VARIABLES (oplgraad = educ5). 
VARIABLE LABELS educ5 "Highest degree of education of Ind". 
 
*** Save what is strictly needed. 
 
SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav" 
    /KEEP=respnr, region, month, men, sexe, age6, educ5, sw_i_s, sw_i 
    /COMPRESSED. 
SYSFILE INFO 'C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav'. 
 
*** Statistics for the new file. 
 
NEW FILE. 
GET FILE="C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav". 
FREQUENCIES VARIABLES=region,month,sexe,age6,educ5. 
WEIGHT BY sw_i_s. 
FREQUENCIES VARIABLES=region,month,sexe,age6,educ5. 
WEIGHT OFF. 
 
***** Matrix program to create a desired design matrix X, and 
***** finally the survey data input file for g-CALIB-S. 
 
NEW FILE. 
MATRIX. 
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***** Read data from variables into vectors. 
 
get case /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables=respnr. 
get str1 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = region. 
get str2 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = month. 
get clus /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = men. 
get sex /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = sexe. 
get age /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = age6. 
* 11 Missing values of EDUC5 are classified as LO (=1). 
* They could also be ignored completely. 
get edu /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' 
        /variables = educ5 /missing = ACCEPT /sysmis = 1. 
get wei1 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = sw_i_s. 
get wei2 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Xd data.sav' /variables = sw_i. 
 
compute N = nrow(case). 
print N / title = 'Number of cases processed :'. 
 
***** Compute stratum variable if combination of Region and Month, 
***** or if other period than Month is used. 
 
***** Prepare terms of maximal calibration model 
*     1 + sex + age6 + educ5 + 3rd order interactions. 
*     (region and/or month as calibration stratum variables). 
 
compute X0 = make(N,1,1)                           /* Term: 1              */. 
DesC1 var=sex des=XS lab=LabS                      /* Term: Sex            */. 
DesC1 var=age des=XA lab=LabA                      /* Term: Age6           */. 
DesC1 var=edu des=XE lab=LabE                      /* Term: Educ5          */. 
 
***** Store design matrix, assigning appropriate names. 
***** 'Default' STRATUM is Region, Month is included. 
***** 'Default' WEIGHT is Sw_i_s, Sw_i is included. 
 
save {case,str1,str2,clus,wei1,wei2,X0,XS,XA,XE} 
     /outfile = 'C:\Actuaris_stage\Cases\TUS\TUS99-Xd data.sav' /variables = 
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       CASE,STRATUM,month,CLUSTER,WEIGHT,sw_i, X0, S1,S2, A1 to A6, E1 to E5. 
 
***** End of matrix module. 
END MATRIX. 
 
NEW FILE. 
 
*******************************************************************************. 
* End of preparing individual auxiliary data (X,d)                            *. 
*******************************************************************************. 
 
 
*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$  SECTION 3  $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*. 
 
 
*******************************************************************************. 
* Start preparing individual auxiliary data (H~,d+): clustering               *. 
*   The DESIGN matrix X must be fully specified first                         *. 
*   This could be ommitted if clustering would be integrated in g-PREPARE     *. 
*******************************************************************************. 
 
GET FILE="C:\Actuaris_stage\Cases\TUS\TUS99-Xd data.sav". 
AGGREGATE 
  /OUTFILE=* /BREAK=cluster 
  /case = MIN(case) /stratum = MEAN(stratum) /month = MEAN(month) 
  /weight = SUM(weight) /sw_i = SUM(sw_i) 
  /X0, S1,S2, A1 to A6, E1 to E5 = MEAN(X0, S1,S2, A1 to A6, E1 to E5). 
SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS99-Hd data.sav" /COMPRESSED. 
 
NEW FILE. 
 
*******************************************************************************. 
* End of preparing individual auxiliary data (H~,d+)                          *. 
*******************************************************************************. 
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*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$  SECTION 4  $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*. 
 
 
*******************************************************************************. 
* Start preparing household auxiliary data (Z,d~)                             *. 
*******************************************************************************. 
 
*   Select RPs from basic individual data file. 
 
GET FILE='C:\Actuaris_stage\Cases\TUS\TUS99-BasicInd.sav'. 
SELECT IF (suite = 1). 
 
*** Create final auxiliary variables and complete dictionary. 
 
VARIABLE LABELS respnr "ID of RP in HBS/TUS" 
                region "Region of residence of HH" 
                men    "HH ID in HBS/TUS". 
 
***** Month of participation (for HBS). 
COMPUTE month = TRUNC(men/10000)-2. 
VARIABLE LABELS month "Month of interview (for HBS)". 
VALUE LABLES month 1 "Jan" 2 "Feb" 3 "Mar" 4 "Apr" 5 "May" 6 "Jun" 
                   7 "Jul" 8 "Aug" 9 "Sep" 10 "Okt" 11 "Nov" 12 "Dec". 
 
***** Age in 6 categories: RPAGE6. 
RECODE age (LOWEST thru 29 = 1) (30 thru 39 = 2) (40 thru 49 = 3) 
           (50 thru 59 = 4) (60 thru 69 = 5) (70 thru HIGHEST = 6) INTO RPage6. 
VARIABLE LABELS RPage6 "Age of RP in 6 ctgrs". 
VALUE LABELS RPage6 1 "< 30" 2 "30-39" 3 "40-49" 4 "50-59" 5 "60-69" 6 "70 +". 
 
***** Rename education variable. 
RENAME VARIABLES (oplgraad = RPeduc5). 
VARIABLE LABELS RPeduc5 "Highest degree of education of RP". 
 
*** Save what is strictly needed. 
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SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav" 
    /KEEP=respnr, region, month, men, HHsize, RPage6, RPeduc5, sw_i_s, sw_i 
    /COMPRESSED. 
SYSFILE INFO 'C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav'. 
 
*** Statistics for the new file. 
 
NEW FILE. 
GET FILE="C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav". 
FREQUENCIES VARIABLES=region,month,hhsize,rpage6,rpeduc5. 
WEIGHT BY sw_i_s. 
FREQUENCIES VARIABLES=region,month,hhsize,rpage6,rpeduc5. 
WEIGHT OFF. 
 
***** Matrix program to create a desired design matrix Z, and 
***** finally the survey data input file for g-CALIB-S. 
 
NEW FILE. 
MATRIX. 
 
***** Read data from variables into vectors. 
 
get case /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables=respnr. 
get str1 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = region. 
get str2 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = month. 
get clus /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = men. 
get siz /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = HHsize. 
get age /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = RPage6. 
* 3 Missing values of RPEDUC5 are classified as LO (=1). 
* They could also be ignored completely. 
get edu /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' 
        /variables = rpeduc5 /missing = ACCEPT /sysmis = 1. 
get wei1 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = sw_i_s. 
get wei2 /file='C:\Actuaris_stage\Cases\TUS\TUS99- to Zd data.sav' /variables = sw_i. 
 
compute N = nrow(case). 
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print N / title = 'Number of cases processed :'. 
 
***** Compute stratum variable if combination of Region and Month, 
***** or if other period than Month is used. 
 
***** Prepare terms of maximal calibration model 
*     1 + HHsize + RPage6 + RPeduc5 + 3rd order interactions. 
*     (region and/or month as calibration stratum variables). 
 
compute X0 = make(N,1,1)                           /* Term: 1              */. 
DesC1 var=siz des=XS lab=LabS                      /* Term: HHSIZE         */. 
DesC1 var=age des=XA lab=LabA                      /* Term: RPAge6         */. 
DesC1 var=edu des=XE lab=LabE                      /* Term: RPEduc5        */. 
 
***** Store design matrix, assigning appropriate names. 
***** 'Default' STRATUM is Region, Month is included. 
***** 'Default' WEIGHT is Sw_i_s, Sw_i is included. 
 
save {case,str1,str2,clus,wei1,wei2,X0,XS,XA,XE} 
     /outfile = 'C:\Actuaris_stage\Cases\TUS\TUS99-Zd data.sav' /variables = 
       CASE,STRATUM,month,CLUSTER,WEIGHT,sw_i, 
       ZX0, ZS1 to ZS5, ZA1 to ZA6, ZE1 to ZE5. 
 
***** End of matrix module. 
END MATRIX. 
 
NEW FILE. 
 
*******************************************************************************. 
* End of preparing individual auxiliary data (Z,d~)                           *. 
*******************************************************************************. 
 
 
*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$  SECTION 5  $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*. 
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*******************************************************************************. 
* Start preparing individual-household auxiliary data (V,d~)                  *. 
*******************************************************************************. 
 
*** Create data matrix H,d~ (NOT H~ !!). 
 
GET FILE="C:\Actuaris_stage\Cases\TUS\TUS99-Xd data.sav". 
AGGREGATE 
  /OUTFILE=* /BREAK=cluster 
  /case = MIN(case) /stratum = MEAN(stratum) /month = MEAN(month) 
  /weight = MEAN(weight) /sw_i = MEAN(sw_i) 
  /X0, S1,S2, A1 to A6, E1 to E5 = SUM(X0, S1,S2, A1 to A6, E1 to E5). 
SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS99-TEMP_H.sav" /COMPRESSED. 
 
*** Merge individual with household data. 
 
NEW FILE. 
MATCH FILES 
 /FILE='C:\Actuaris_stage\Cases\TUS\TUS99-Zd data.sav' 
 /FILE="C:\Actuaris_stage\Cases\TUS\TUS99-TEMP_H.SAV" 
   /RENAME  sw_i=drp1 weight=drp2 cluster=zclust month=zmonth stratum=zstrat 
 /BY case 
 /DROP=drp1 drp2. 
 
*   Test validity of matches. 
 
CROSSTABS 
  /TABLES=stratum BY zstrat 
  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT. 
CROSSTABS 
  /TABLES=month BY stratum 
  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT. 
CROSSTABS 
  /TABLES=month BY zmonth 
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  /FORMAT= AVALUE TABLES 
  /CELLS= COUNT. 
COMPUTE dif=0. 
COMPUTE dif=cluster-zclust. 
FREQUENCIES dif. 
 
*   Save merged design matrix. 
 
SAVE OUTFILE="C:\Actuaris_stage\Cases\TUS\TUS99-Vd data.SAV" 
    /DROP zclust zmonth zstrat dif /COMPRESSED. 
 
*******************************************************************************. 
* End of preparing individual-household auxiliary data (V,d~)                 *. 
*******************************************************************************. 
 
ERASE FILE="C:\Actuaris_stage\Cases\TUS\TUS99-TEMP_H.SAV". 
 
NEW FILE. 
 
*     Restore current environment variables. 
restore. 
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VII.C SYNTAX FILES FOR THE TS 

 
VII.C.1 From a basic individual data file to a household respondents file 

 
*******************************************************************************. 
* TS_PrepareRespondingHH.sps                                                  *. 
*******************************************************************************. 
* Purpose: create HH respondent file                                          *. 
*          = file from which survey data input file for g_CALIB-S can be      *. 
*            constructed                                                      *. 
*******************************************************************************. 
* Input files : @INPDATA = initial TS sample of individuals                   *. 
*               @SDESIGN = sampling stratification information                *. 
* Output file : @OUTDATA = responding HHs, with proper HH and RP's char's     *. 
* Working file(s) : AGG-HH.sav                                                *. 
*******************************************************************************. 
* Other program parameters (macros, set through Prod. Fac. job)               *. 
*    @WORKDIR = directory where everything is stored                          *. 
*******************************************************************************. 
 
SET MXLOOP=100000. 
SET MXMEMORY=200000. 
 
DEFINE @message(!positional !tokens(1)). 
print /title="***** MESSAGE *****". 
print /title=!1. 
!END DEFINE. 
 
***** Here we go!!. 
 
matrix. 
@MESSAGE "The initial sample of persons is read ...". 
@MESSAGE "Haven't you forgotten the position of STAT_RSP ?". 
end matrix. 
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***** From ASCII file to SPSS data file. 
*     Read ASCII file with complete intial sample of individuals. 
*     Only variables needed for calibration are read. 
*   ! Position for STAT_RSP depends on the TRIMESTER. 
 
data list file=@WORKDIR + @INPDATA fixed records=1 
  /1 TSHHNo  1- 8(F)   NISCOM 14-18(F)   AGE_CY   21-22(F)  
     SEX    23-23(F)   EDUC   24-24(F)   PROF     25-26(F) 
     NN_IND 29-39(F)   NN_RP  40-50(F)   STAT_RSP 52-52(A). 
 
*     Add information to DD (of working file). 
 
*     Check contents of working file. 
 
matrix. 
@MESSAGE "Inspect distribution of variables read from input file ...". 
end matrix. 
FREQUENCIES /VARIABLES=ALL /FORMAT=CONDENSE LIMIT(75). 
matrix. 
@MESSAGE "Persons w/o NN of RP cannot be assigned to a HH; hence exclude ...". 
end matrix. 
 
***** Construct HH file. 
 
*  A. Proper HH characteristics: 
*       - Size of HH, and response at HH level 
*       - Residence 
*       - Number of active members 
*       - Age of youngest and oldest HH member 
*     (stored in temporary file). 
 
matrix. 
@MESSAGE "Proper HH information is created ...". 
end matrix. 
NUMERIC s.isRP (F11) /s.active (F1) /HHresp (F2). 



  

 –  167  – 

COMPUTE s.isRP = 0. 
IF (nn_ind = nn_rp) s.isRP =1. 
RECODE stat_rsp (" "=0) ("R"=0) ("Y"=1) INTO HHresp. 
RECODE prof (1 thru 5=1) (6 thru 11=0) (ELSE=0)  INTO s.active. 
AGGREGATE OUTFILE=@WORKDIR + 'AGG-HH.sav' /BREAK TShhno 
  /HHsize   'Nbr of HH members (in sample file)' = N 
  /n_HHresp 'Nbr of responding members in HH'    = SUM(HHresp) 
  /is_RP    'RP identified (by NN)'              = MAX(s.isRP) 
  /niscom   'NIS code of residence'              = MAX(niscom) 
  /n_active 'Min nbr of active members in HH'    = SUM(s.active) 
  /minage   'Age of youngest member'             = MIN(age_cy) 
  /maxage   'Age of oldest member'               = MAX(age_cy). 
 
*  B. HH characteristics from RP: 
*       - Age, sex, educational level, and prof. status of RP 
*       - NN of RP. 
 
matrix. 
@MESSAGE "RP's characteristics are prepared as HH information ...". 
end matrix. 
SELECT IF (s.isRP = 1). 
RENAME VARIABLES (sex=RP_sex) (age_cy=RP_age) (educ=RP_educ) 
                 (prof=RP_prof) (s.active=RP_act). 
SORT CASES BY TShhno. 
 
***** Merge RP characteristics (in *) with proper HH characteristics. 
 
matrix. 
@MESSAGE "Proper HH and RP information are joined together ...". 
end matrix. 
MATCH FILES FILE=* /TABLE=@WORKDIR + 'AGG-HH.sav' /BY TShhno. 
 
*     Check contents of working file. 
 
matrix. 
@MESSAGE "Inspect distribution of characteristics in INITIAL HH sample ...". 
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end matrix. 
FREQUENCIES /VARIABLES=ALL /FORMAT=CONDENSE LIMIT(75). 
 
***** Select responding HHs. 
 
SELECT IF (n_HHresp > 0). 
matrix. 
@MESSAGE "Responding HHs are selected ...". 
end matrix. 
 
***** Include SAMPLING INFORMATION in the HH respondent file. 
matrix. 
@MESSAGE "Sampling strat. information is included in HH RESPONDENT file ...". 
@MESSAGE "Sampling parameters: from PSIZE and SSIZE ...". 
@MESSAGE "An extra variable REGION is 'automatically' included this way". 
end matrix. 
 
*     Sampling stratification PROV : Province + Brussels (11). 
COMPUTE Prov = TRUNC(niscom/10000). 
IF (TRUNC(niscom/1000) = 21) Prov = 2. 
IF (TRUNC(niscom/1000) = 23 OR TRUNC(niscom/1000) = 24) Prov = 10. 
IF (TRUNC(niscom/1000) = 25) Prov = 11. 
FORMATS Prov (F2). 
VARIABLE LABELS Prov "Province - Brussels". 
VALUE LABELS Prov 
 1 "Antwerpen" 2 "Brus-Brux" 3 "West-Vlaanderen" 4 "Oost-Vlaanderen" 
 5 "Hainaut" 6 "Liège" 7 "Limburg" 8 "Luxembourg" 9 "Namur" 
 10 "Vlaams-Brabant" 11 "Brabant Wallon". 
 
*     Sampling stratification AgeSize : RPage-HHsize classes (17). 
RECODE RP_age (Lowest thru 24 = 1) (25 thru 39 = 2) (40 thru 54 = 3) 
              (55 thru 64 = 4) (65 thru Highest = 5) INTO nagecl5. 
IF (nagecl5 = 1 AND n_HHresp = 1) AgeSize = 1. 
IF (nagecl5 = 1 AND n_HHresp > 1) AgeSize = 2. 
IF (nagecl5 = 2 AND n_HHresp = 1) AgeSize = 3. 
IF (nagecl5 = 2 AND n_HHresp = 2) AgeSize = 4. 
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IF (nagecl5 = 2 AND n_HHresp = 3) AgeSize = 5. 
IF (nagecl5 = 2 AND n_HHresp > 3) AgeSize = 6. 
IF (nagecl5 = 3 AND n_HHresp = 1) AgeSize = 7. 
IF (nagecl5 = 3 AND n_HHresp = 2) AgeSize = 8. 
IF (nagecl5 = 3 AND n_HHresp = 3) AgeSize = 9. 
IF (nagecl5 = 3 AND n_HHresp > 3) AgeSize = 10. 
IF (nagecl5 = 4 AND n_HHresp = 1) AgeSize = 11. 
IF (nagecl5 = 4 AND n_HHresp = 2) AgeSize = 12. 
IF (nagecl5 = 4 AND n_HHresp = 3) AgeSize = 13. 
IF (nagecl5 = 4 AND n_HHresp > 3) AgeSize = 14. 
IF (nagecl5 = 5 AND n_HHresp = 1) AgeSize = 15. 
IF (nagecl5 = 5 AND n_HHresp = 2) AgeSize = 16. 
IF (nagecl5 = 5 AND n_HHresp > 2) AgeSize = 17. 
VARIABLE LABELS AgeSize 'RP-age - HH-size combination' . 
VALUE LABELS AgeSize 
  1 "0-24  1p"  2 "0-24  2+" 
  3 "25-39 1p"  4 "25-39 2p"  5 "25-39 3p"  6 "25-39 4+" 
  7 "40-54 1p"  8 "40-54 2p"  9 "40-54 3p" 10 "40-54 4+" 
 11 "55-64 1p" 12 "55-64 2p" 13 "55-64 3p" 14 "55-64 4+" 
 15 "65+   1p" 16 "65+   2p" 17 "65+   3+". 
 
*     Merge HH RESPONDENT file with transformation table 
*     and compute the sampling weights. 
SORT CASES BY Prov (A) AgeSize (A). 
MATCH FILES /FILE=* /TABLE=@WORKDIR + @SDESIGN /BY Prov AgeSize. 
COMPUTE SampWei = Psize / Ssize. 
VARIABLE LABELS Psize   "Nbr. of HHs in the HH's population stratum" 
               /Ssize   "Nbr. of HHs in the HH's sample stratum" 
               /SampWei "STR-SRS Sampling weight of the HH". 
matrix. 
@MESSAGE "The SAMPLING WEIGHTS have finally be computed and included ...". 
end matrix. 
 
*     Check contents of working file before saving. 
 
matrix. 
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@MESSAGE "Inspect distribution of characteristics in HH RESPONDENT sample ...". 
end matrix. 
FREQUENCIES /VARIABLES=ALL /FORMAT=CONDENSE LIMIT(75). 
SORT CASES BY prov. 
SPLIT FILE SEPARATE BY prov. 
TABLES 
  /FORMAT BLANK MISSING('.') 
  /OBSERVATION psize ssize sampwei 
  /TABLES agesize BY (psize + ssize + sampwei) BY prov 
  /STATISTICS mean( ) validn( ( NEQUAL5.0 )). 
SPLIT FILE OFF. 
 
***** Response analyis. 
 
matrix. 
@MESSAGE "More information on RESPONSE/NONRESPONSE can be produced ...". 
@MESSAGE "The only thing I need to do this is TIME (not much!)". 
end matrix. 
 
***** Sort and save HH respondent sample. 
 
matrix. 
@MESSAGE "Saving the HH RESPONDENT sample ...". 
@MESSAGE "The file is sorted on TShhno". 
end matrix. 
SORT CASES BY TShhno. 
SAVE OUTFILE=@WORKDIR + @OUTDATA 
  /DROP=s.isrp nagecl5 stratum /COMPRESSED. 
 
***** Clean up. 
ERASE FILE=@WORKDIR + 'AGG-HH.sav'. 
 
*******************************************************************************. 
* End of creation of HH respondent file for TS                                *. 
*******************************************************************************. 
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VII.C.2 Creation of a design matrix for household-level calibration 

 
*******************************************************************************. 
* TS_MakeHHDesignMatrix.sps                                                   *. 
*******************************************************************************. 
* Purpose: create design matrix for HH respondent file                        *. 
*          = the survey data input file for g_CALIB-S                         *. 
*******************************************************************************. 
* Input file  : @OUTDATA = HH respondent sample                               *. 
* Output files: @DESMAT  = design matrix for HH respondent sample             *. 
*               TS-CalTotStructure.sav = aggregated version of @DESMAT        *. 
* Working file(s) :                                                           *. 
*******************************************************************************. 
* Other program parameters (macros)                                           *. 
*    @WORKDIR = directory where everything is stored                          *. 
*******************************************************************************. 
 
SET MXLOOP=100000. 
SET MXMEMORY=200000. 
 
DEFINE @message(!positional !tokens(1)). 
print /title="***** MESSAGE *****". 
print /title=!1. 
!END DEFINE. 
 
***** Here we go!!. 
 
matrix. 
@MESSAGE "The HH respondent sample file is read ...". 
end matrix. 
 
GET FILE=@WORKDIR + @OUTDATA. 
 
***** Choose and recode calibration variables (must be numeric). 
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matrix. 
@MESSAGE "Prepare potential variables for calibration ...". 
@MESSAGE "(Geographic, Socio-demographic, HH composition)". 
end matrix. 
 
***   Geografic variables : Arrond, Prov, Region. 
 
*     ARROND : Arrondissement (43). 
COMPUTE arrond = TRUNC(niscom/1000). 
FORMATS arrond (F2). 
VARIABLE WIDTH arrond(7). 
VARIABLE LABELS arrond 'Arrondissement'. 
VALUE LABELS arrond 21 'Brussel' 11 'Antwerpen' 12 'Mechelen' 13 'Turnhout' 
 23 'Halle-Vilvoorde' 24 'Leuven' 71 'Hasselt' 72 'Maaseik' 73 'Tongeren' 
 41 'Aalst' 42 'Dendermonde' 43 'Eeklo' 44 'Gent' 45 'Oudenaarde' 
 46 'Sint-Niklaas' 31 'Brugge' 32 'Diksmuide' 33 'Ieper' 34 'Kortrijk' 
 35 'Oostende' 36 'Roeselare' 37 'Tielt' 38 'Veurne' 25 'Nivelles' 
 51 'Ath' 52 'Charleroi' 53 'Mons' 54 'Mouscron' 55 'Soignies' 56 'Thuin' 
 57 'Tournai' 61 'Huy' 62 'Liège' 63 'Verviers' 64 'Waremme' 81 'Arlon' 
 82 'Bastogne' 83 'Marche-en-Famenne' 84 'Neufchâteau' 85 'Virton' 
 91 'Dinant' 92 'Namur' 93 'Philippeville'. 
 
*     PROV : Province + Brussels (11). 
*COMPUTE prov = TRUNC(niscom/10000). 
*IF (arrond = 21) prov = 2. 
*IF (arrond = 23 OR arrond = 24) prov = 10. 
*IF (arrond = 25) prov = 11. 
*FORMATS prov (F2). 
*VARIABLE LABELS prov "10 Provinces + Brussels". 
*VALUE LABELS prov 
* 1 "Antwerpen" 2 "Brussel" 3 "West-Vlaanderen" 4 "Oost-Vlaanderen" 
* 5 "Hainnaut" 6 "Liège" 7 "Limburg" 8 "Luxembourg" 9 "Namur" 
* 10 "Vlaams-Brabant" 11 "Brabant Wallon". 
 
*     REGION : Region (3). 
*RECODE prov (2=1) (1=2) (7=2) (10=2) (3 thru 4=2) (ELSE=3) INTO region. 
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*FORMATS region (F1). 
*VARIABLE LABELS region "Region". 
*VALUE LABELS region 1 "Brus-Brux" 2 "Vlaanderen" 3 "Wallonie". 
 
***   Socio-demographic variables : Agecat, Profcat, ProfAge. 
 
RECODE rp_prof (1=2) (2=1) (3 thru 5=3) (6 thru HIGHEST=4) INTO profcat. 
RECODE rp_age (LOWEST thru 24=1) (25 thru 39=2) (40 thru 54=3) 
              (55 thru 64=4) (65 thru HIGHEST=5) INTO agecat. 
NUMERIC profage (F1). 
IF (profcat <= 3) profage = profcat. 
IF (profcat = 4 AND agecat <= 4) profage = 4. 
IF (profcat = 4 AND agecat  = 5) profage = 5. 
VARIABLE LABELS profcat "Professional category of RP" 
               /agecat  "Age class of RP" 
               /profage "Combination Prof-Age (old post-strat. var.) (RP)". 
VALUE LABELS 
   profcat 1 "E+F" 2 "0" 3 "I" 4 "NR" 
  /agecat  1 "<=24" 2 "25-39" 3 "40-54" 4 "55-64" 5 "65+" 
  /profage 1 "E+F" 2 "0" 3 "I" 4 "NR <64" 5 "NR 65+". 
 
***   HH composition variables : HHsize2, Active2, Adol. 
 
RECODE HHsize (1=1) (ELSE = 2) INTO HHsize2. 
RECODE n_active (0 = 1) (ELSE = 2) INTO Active2. 
VARIABLE LABELS HHsize2 "HH size class" 
                Active2 "Presence of active HH members". 
VALUE LABELS 
   HHsize5 1 "single" 2 "2+ pers" 
  /Active2 1 "No" 2 "Yes". 
 
***  Inspection of new variables. 
 
FREQUENCIES VARIABLES=region arrond prov agecat profcat profage HHsize2 active2 
  /FORMAT=CONDENSE. 
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matrix. 
@MESSAGE "Find macros for creating design matrix ...". 
end matrix. 
 
INCLUDE FILE=@SOFTDIR + 'g-DESIGN.sps'. 
 
matrix. 
@MESSAGE "Start creation of design matrix ...". 
end matrix. 
 
matrix. 
 
@MESSAGE "Design matrix will be stored with other potential cal. vars. ...". 
 
get ID   /file=* /variables=TShhno. 
get SW   /file=* /variables=SampWei. 
get STR  /file=* /variables=region. 
get ST2  /file=* /variables=prov. 
get AGE  /file=* /variables=agecat. 
get PRO  /file=* /variables=profcat. 
get COM  /file=* /variables=profage. 
get HHS  /file=* /variables=hhsize2. 
get ACT  /file=* /variables=active2. 
 
compute N = nrow(ID). 
print N /title='Number of cases processed:'. 
 
@MESSAGE "Preparing terms of calibration model ...". 
compute X0 = make(N,1,1)                            /*  Term: 1              */. 
DesC1 var=AGE des=XAge lab=Labage                   /*  Term: Agecat  (5)    */. 
DesC1 var=PRO des=XPro lab=LabPro                   /*  Term: Profcat (4)    */. 
DesC1 var=COM des=XCom lab=LabCom                   /*  Term: ComPrAg (6)    */. 
DesC1 var=HHS des=XHHs lab=LabHHs                   /*  Term: HHsize  (2)    */. 
DesC1 var=ACT des=XAct lab=LabAct                   /*  Term: Active  (2)    */. 
DesC2 var1=AGE var2=PRO des=XAgPr lab=LabAgPr p=2   /*  Term: Agecat.Profcat */. 
DesC2 var1=HHS var2=ACT des=XHsAc lab=LabHsAc p=2   /*  Term: HHsize.Active  */. 
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@MESSAGE "Sugg. max. mod. 1 : (1 + Agecat*Profcat + HHsize*Active) * STRATUM". 
@MESSAGE "Sugg. max. mod. 2 : (1 + ComPrAg + HHsize*Active) * STRATUM". 
@MESSAGE "STRATUM is set to Region; alternative stored as Prov". 
 
@MESSAGE "Pay attention to order of labels (Later: calibration totals!!) ...". 
 
print {Labage}. 
print {LabPro}. 
print {LabCom}. 
print {LabHHs}. 
print {LabAct}. 
print {LabAgPr}. 
print {LabHsAc}. 
 
@MESSAGE "Original data, design matrix and other vars. are stored ...". 
 
*     Info      Original vars           Terms in DM. 
save {ID,SW,STR,ST2,AGE,PRO,COM,HHS,ACT,X0,XAge,XPro,XCom,XHHs,XAct,XAgPr,XHsAc} 
     /outfile= @WORKDIR + @DESMAT /variables = 
      CASE, WEIGHT, STRATUM,                        /* Fixed names           */ 
      prov,agecat,profcat,profage,hhsize5,active2,  /* Original variables    */ 
      x0, age1 to age5, pro1 to pro4, com1 to com5, /* Choose names for ...  */ 
      hhs1 to hhs2, act1 to act2,                   /* ... O-1 columns in DM */ 
      ap1 to ap20, ha1 to ha4. 
 
@MESSAGE "Columns of DM are summed OVER ALL STRATA ...". 
compute X0    = csum(X0). 
compute XAge  = csum(XAge). 
compute XPro  = csum(XPro). 
compute XCom  = csum(XCom). 
compute XHHs  = csum(XHHs). 
compute XAct  = csum(XAct). 
compute XAgPr = csum(XAgPr). 
compute XHsAc = csum(XHsAc). 
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@MESSAGE "Inspect labels and overall sample totals! ...". 
print { 1,LabAge,LabPro,LabCom,LabHHs,LabAct,LabAgPr,LabHsAc; 
       X0,XAge,  XPro,  XCom,  XHHs,  XAct,  XAgPr,  XHsAc}. 
 
end matrix. 
 
matrix. 
@MESSAGE "Load file with calibration design matrix ...". 
end matrix. 
get file= @WORKDIR + @DESMAT. 
 
matrix. 
@MESSAGE "Aggregating by STRATUM; then inspect sample totals of cal.vars. ...". 
end matrix. 
AGGREGATE 
  /OUTFILE=* /BREAK=stratum 
  /x0, age1 to age5, pro1 to pro4, com1 to com5, hhs1 to hhs2, 
   act1 to act2, ap1 to ap20, ha1 to ha4 
   = SUM(x0, age1 to age5, pro1 to pro4, com1 to com5, hhs1 to hhs2, 
         act1 to act2, ap1 to ap20, ha1 to ha4). 
 
matrix. 
@MESSAGE "From the aggregated survey input file can the calibration totals ...". 
@MESSAGE "... file be easily created; this is saved as TS-CalTotStructure.sav". 
end matrix. 
 
SAVE OUTFILE=@WORKDIR + "TS-CalTotStructure.sav" /COMPRESSED. 
 
matrix. 
@MESSAGE "Finally, find calibrtion totals, and put them in TS-CalTotStructure.sav". 
end matrix. 
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VII.D SYNTAX FILES FOR AN APPLICATION ON LABOUR VOLUME AND LABOUR COMPENSATION 

 
VII.D.1 Transformation of cross-tabulated data on labour volume and labour compensation 

 
****************************************************************************. 
* Transform crosstabs.sps                                                  *. 
*                                                                          *. 
* C. VANDERHOEFT              November 2000                                *. 
*                                                                          *. 
* Data provided by ANJA TERMOTE, statistician                              *. 
*                                                                          *. 
****************************************************************************. 
* This program illustrates how to use the macros from g-DESIGN.sps for     *. 
* constructing the calibration design matrix, and how to create the survey *. 
* data file that is one of the input files for the calibration module      *. 
* g-CALIB-S.sps.                                                           *. 
*                                                                          *. 
* The original data are a cross-tabulation of (weighted) totals of a       *. 
* quantitative variable, stored in column format in the SPSS data file     *. 
* C:\Actuaris_Stage\Cases\Anja\Crosstabs.sav                               *. 
*                                                                          *. 
* We recommend to sort this file by the variable ‘Table’ and by all other  *. 
* qualitative calibration variables used later.                            *. 
*                                                                          *. 
****************************************************************************. 
 
***** Set: @DRIVE   = drive letter (e.g. 'C:\') (for software and data) 
*          @SOFTDIR = location of software 
*          @WORKDIR = work directory 
*          @INPDATA = name of input file 
*          @DESMAT  = and name of output file. 
 
DEFINE @DRIVE () 
  'C:\'. 
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!END DEFINE. 
 
DEFINE @SOFTDIR () 
  '803-bmcnew\Calibration\g_DESIGN\'. 
!END DEFINE. 
 
DEFINE @WORKDIR () 
  'Actuaris_Stage\Cases\Anja\'. 
!END DEFINE. 
 
DEFINE @INPDATA () 
  'Crosstabs.sav'. 
!END DEFINE. 
 
DEFINE @DESMAT () 
  'Collapsed_Data.sav'. 
!END DEFINE. 
 
***** Load the macros. 
 
INCLUDE FILE = @DRIVE + @SOFTDIR + 'g-DESIGN.SPS'. 
 
***** Clear working data file. 
 
NEW FILE. 
 
***** Start matrix module. 
 
matrix. 
 
***** Read data from variables into vectors. 
*     (Vector names are arbitrary). 
 
get se /file=@DRIVE + @WORKDIR + @INPDATA /variables = sex. 
get ed /file=@DRIVE + @WORKDIR + @INPDATA /variables = educ. 
get br /file=@DRIVE + @WORKDIR + @INPDATA /variables = branch. 
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get cv /file=@DRIVE + @WORKDIR + @INPDATA /variables = lab_vol. 
get st /file=@DRIVE + @WORKDIR + @INPDATA /variables = table. 
 
compute N = nrow(st). 
print N / title = 'Number of CELLS processed :'. 
 
***** Prepare terms of maximal calibration model 
*     1 + Branch + Sex*Educ = 1 + Sex + Educ + Branch + Sex*Educ. 
*     It will allow to apply many alternative calibration models. 
 
compute X0 = make(N,1,1)                     /*  Term: 1          */. 
DesC1 var=se des=XS lab=LabS                 /*  Term: Sex        */. 
DesC1 var=ed des=XE lab=LabE                 /*  Term: Educ       */. 
DesC1 var=br des=XB lab=LabB                 /*  Term: Branch     */. 
DesC2 var1=se var2=ed des=XSE lab=LabSE p=1  /*  Term: Sex*Educ   */. 
 
***** Prepare remaining input variable(s) for the calibration module. 
 
compute id = st*1000 + se*100 + ed*10 + br. 
 
***** Print original variables, components of design matrix and labels. 
 
print { 99,nrow(se),nrow(ed),nrow(br),99,nrow(st), 1,LabS,LabE,LabB,LabSE ; 
        id,     se ,     ed ,     br ,cv,     st ,X0,  XS,  XE,  XB,  XSE } 
      /formats F4. 
 
***** Store original data and design matrix, assigning appropriate names. 
 
save {  id,    cv,     st, se,  ed,    br, 
        X0,   XS,      XE,               XB,                          XSE } 
     /outfile = @DRIVE + @WORKDIR + @DESMAT /variables = 
      CASE,WEIGHT,STRATUM,sex,educ,branch, 
        X0,S1,S2,E1,E2,E3,B1,B2,B3,B4,B5,B6,SE11,SE12,SE13,SE21,SE22,SE23. 
 
***** End of matrix module. 
end matrix. 
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***** Load file with calibration design matrix (for inspection). 
*     This is one of the input files for g-CALIB-S. 
 
get file = @DRIVE + @WORKDIR + @DESMAT. 
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VII.D.2 Presentation of the results in cross-tabulations  

 
****************************************************************************. 
* Estimates.sps                                                            *. 
*                                                                          *. 
* C. VANDERHOEFT              November 2000                                *. 
*                                                                          *. 
****************************************************************************. 
 
NEW FILE. 
GET FILE=@WORKDIR + 'WEIGHTS.SAV'. 
SORT CASES BY case. 
SAVE OUTFILE=@WORKDIR + 'WEIGHTS.SAV' /COMPRESSED. 
 
NEW FILE. 
GET FILE=@WORKDIR + @XDATA. 
SORT CASES BY case. 
 
MATCH FILES /FILE=* /TABLE=@WORKDIR + 'Weights.sav' 
 /RENAME (stratum = d0) /BY case /DROP= d0. 
 
SELECT IF (~ SYSMIS(g_weig)). 
 
SPLIT FILE SEPARAT BY stratum. 
 
WEIGHT OFF. 
 
TEMPORARY. 
NUMERIC T0000000. 
LEAVE T0000000. 
VARIABLE LABEL T0000000 'Table Total'. 
VALUE LABELS T0000000 0 ' '. 
TABLES 
  /FORMAT BLANK MISSING('.') 
  /OBSERVATION calwei 
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  /TABLES (sex > (educ) + T0000000) > calwei 
  BY (branch + T0000000) > (STATISTICS) 
  BY (stratum +  T0000000 ) 
  /TITLE 'Estimated contingency table (CALWEI in table format)' 
  /STATISTICS 
  sum( ). 
 
TEMPORARY. 
TABLES 
  /FORMAT BLANK MISSING('.') 
  /OBSERVATION g_weig 
  /TABLES (sex > (educ)) > g_weig 
  BY branch > (STATISTICS) 
  BY stratum 
  /TITLE 'Estimated g-weights (G-WEIG in table format)' 
  /STATISTICS 
  sum( ). 
 
NEW FILE. 
 
EXECUTE. 
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VII.E SPSS SYNTAX FILES FOR APPLICATION ON SBS 

 
VII.E.1 Syntax to prepare input files for g-CALIB-S, from a file containing survey and sampling frame data 

 
****************************************************************************. 
* SBS_g-DESIGN.sps                                                         *. 
*                                                                          *. 
* C. VANDERHOEFT                December 2000                              *. 
****************************************************************************. 
* This program illustrates how to use the macros from g-DESIGN.sps for     *. 
* constructing the calibration design matrix, and how to create the survey *. 
* data file that is one of the input files for the calibration module      *. 
* g-CALIB-S.sps.                                                           *. 
****************************************************************************. 
* Input file  :                                                            *. 
*    @INPDATA : Ultim Resp (A) Sample.sav  (Complete respondent sample sA) *. 
* Output files :                                                           *. 
*    @BASIC  : SBS-Sample 4.sav    (Final, possibly reduced sample)        *. 
*    @DESMAT : SBS Survey data.sav (Survey data file, with design matrix)  *. 
****************************************************************************. 
 
SET MXLOOP = 100000. 
SET MXMEMORY = 200000. 
 
***** Set: @SOFTDIR = location of software, 
*          @WORKDIR = work directory, 
*          @INPDATA = name of input file, 
*          @DESMAT  = and name of output file. 
 
DEFINE @SOFTDIR () 
  'C:\803-bmcnew\Calibration\g_DESIGN\'. 
!END DEFINE. 
 
DEFINE @WORKDIR () 
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  'C:\Actuaris_Stage\Cases\JeanMarie\'. 
!END DEFINE. 
 
DEFINE @INPDATA () 
  'Ultim Resp (A) Sample.sav'. 
!END DEFINE. 
 
DEFINE @BASIC () 
  'SBS-Sample 4.sav'. 
!END DEFINE. 
 
DEFINE @DESMAT () 
  'SBS Survey data.sav'. 
!END DEFINE. 
 
DEFINE @ADJFRAM () 
  'SBS Cal-totals.sav'. 
!END DEFINE. 
 
***** Prepare data file: Select enterprises in NACE1 category 4. 
*                        Number NACE4 categories. 
*                        Compute enterprise identification ID_ENT. 
 
NEW FILE. 
GET FILE = @WORKDIR + @INPDATA. 
SELECT IF nace1="4".                   /* Omit if complete sample is processed*/ 
SORT CASES BY nace4. 
SAVE OUTFILE=@WORKDIR + @BASIC /COMPRESSED. 
AGGREGATE /OUTFILE=* /BREAK=nace4 /N_BREAK=N. 
COMPUTE no_nace4 = $CASENUM. 
MATCH FILES /TABLE=* /FILE=@WORKDIR + @BASIC /BY nace4. 
SORT CASES BY no_nace4 clss_iii. 
COMPUTE id_ent = $casenum. 
SAVE OUTFILE=@WORKDIR + @BASIC /COMPRESSED. 
 
***** Load the macros for constructing the design matrix. 
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INCLUDE FILE = @SOFTDIR + 'g-DESIGN.SPS'. 
 
***** Start matrix module. 
matrix. 
 
***** Read data from variables into vectors. 
get ID /file=* /variables = id_ent. 
get SW /file=* /variables = weight.        /* The sampling weights are ready */ 
get A  /file=* /variables = no_nace4. 
get B  /file=* /variables = clss_iii. 
 
compute N = nrow(ID). 
print N / title = 'Number of cases processed :'. 
 
***** Prepare terms of calibration model. 
compute X0 = make(N,1,1)                           /*  Term: 1              */. 
DesC1 var=A des=XA lab=LabA                        /*  Term: NACE4          */. 
DesC1 var=B des=XB lab=LabB                        /*  Term: CLSS_III       */. 
DesC2 var1=A var2=B des=XAB lab=LabAB p=2          /*  Term: NACE4.CLSS_III */. 
compute STR = make(N,1,1). 
 
***** Inspect labels, to assign names to calibration variables. 
print {LabA} /title "NACE4 categories are met in the following order:". 
print {LabB} /title "NACE4 categories are met in the following order:". 
print {LabAB} /title "NACE4 categories are met in the following order:". 
 
 
***** Store the design matrix, etc, assigning appropriate names. Inspection 
*     of the NACE4 x CLSS_III table and the labels has suggested the ordering 
*     of the calibration variables for the margins of CLSS_III. Similar 
*     reordering is possible for the cell indicators, but for 126 variables, 
*     this is a lot of unnecessary work. 
save { ID, SW, STR, A, B, X0, XA, XB, XAB } 
     /outfile = @WORKDIR + @DESMAT /variables = CASE, WEIGHT, STRATUM, 
      NO_NACE4, CLSS_III, X0, NACE4_01 to NACE4_21, 
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                          CLAS_4, CLAS_5, CLAS_1, CLAS_2, CLAS_3, CLAS_0, 
                          N4CL001 to N4CL126. 
 
print /title="**** THE REMAINDER OF THIS PROGRAM IS TO HELP THE USER PREPARING". 
print /title="**** THE CALIBRATION TOTALS FILE". 
print /title="**** READ THE SYNTAX, OR OPEN LOGS IN THE VIEWER FOR INSTRUCTIONS". 
 
end matrix. 
***** End of matrix module. 
 
***** Load file with calibration design matrix. 
***** Aggregate by STRATUM, and inspect sample totals of cal.vars. 
 
get file = @WORKDIR + @DESMAT. 
AGGREGATE 
  /OUTFILE='Agg_Sample.sav' /BREAK=stratum 
  /nace4_01 TO nace4_21 = SUM(nace4_01 TO nace4_21) 
  /clas_0 = SUM(clas_0) /clas_1 = SUM(clas_1) /clas_2 = SUM(clas_2) 
  /clas_3 = SUM(clas_3) /clas_4 = SUM(clas_4) /clas_5 = SUM(clas_5) 
  /n4cl001 TO n4cl126 = SUM(n4cl001 TO n4cl126). 
 
*   IF SOME CAL.VARS. HAVE ZERO SAMPLE TOTAL, THEN DELETE THESE VARIABLES !!!. 
 
***** Reload file with calibration design matrix, and merge with basic file. 
***** The required population information is then available for calculation 
***** of the "adjusted post-stratum population sizes", and for preparation 
***** of the calibration totals file. 
GET FILE = @WORKDIR + @DESMAT. 
MATCH FILES /FILE=* 
 /FILE=@WORKDIR + @BASIC 
 /RENAME (clss_iii no_nace4 stratum weight = d0 d1 d2 d3) 
 /DROP= d0 d1 d2 d3. 
*   There is a perfect match if the variable MATCH has only the value zero. 
COMPUTE match = case-id_ent. 
FREQUENCIES /VARIABLES=match. 
*   Calibration totals file: adjusted frame sizes. 
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*SELECT IF (no_nace4 = 9 and clss_iii=0).                /* For testing only */ 
 
TABLES 
  /FORMAT BLANK MISSING('.') 
  /OBSERVATION caltot 
  /TABLES no_nace4 > caltot 
  BY clss_iii > (STATISTICS) 
  /STATISTICS 
  mean( ). 
 
***** ALL CALIBRATION TOTALS CAN BE DERIVED FROM THIS TABLE: IT IS  
***** SUGGESTED TO COPY THE TABLE TO A SPREADSHEET, AND FINDING THE  
***** MARGINAL TOTALS IN ORDER TO PRODUCE THE CALIBRATION TOTALS  
***** CORRESPONDING TO THE TERMS NACE4 AND CLSS_III IN THE MODEL FORMULA. 
***** UNFORTUNATELY, THE CELL ENTRIES ARE NOT IN THE 'RIGHT' ORDER, 
***** i.e. NOT IN THE SAME ORDER AS THE CELL INDICATOR VARIABLES (N4CL###) 
***** IN THE SURVEY DATA INPUT FILE. 
***** THEREFORE ... 
WEIGHT BY caltot. 
AGGREGATE 
  /OUTFILE=@WORKDIR + 'Aggr_Partial.sav' /BREAK=stratum 
  /n4cl001 TO n4cl126 = SUM(n4cl001 TO n4cl126). 
 
***** WE HAVE THE CELL BENCHMARKS, AFTER DIVIDING BY THE SAMPLE SIZES, 
***** IN THE RIGHT ORDER NOW. 
***** SOME MORE MANUAL WORK IS REQUIRED TO CONSTRUCT THE BENCHMARKS FILE. 
***** WE ALREADY PREPARE THE STRUCTURE ... 
GET FILE=@WORKDIR + 'Agg_Sample.sav'. 
SAVE OUTFILE=@WORKDIR + @ADJFRAM /COMPRESSED. 
 
***** JUST FILL IN NOW THE RIGHT NUMBERS. 
***** DON'T FORGET TO DELETE VARIABLES FOR WHICH SAMPLE 
***** TOTAL OR BENCHMARK IS ZERO. 
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