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Dear reader,

You are about to read a publication of the new methodological series of Statistics Belgium, the
Belgian National Institute for Statistics. This series is called “Statistics Belgium Working Papers”.
Our intention is to provide our users and everyone who in business and academic life engages in
statistics, with studies, reports and preparatory documents. We also wish to give our staff,
statisticians, methodologists and others a chance to disseminate their ideas and the results of their
work.

These working papers aim to contribute to the development of statistical knowledge and the
exchange of ideas.

As working papers, they will not reflect the official view of either Statistics Belgium (INS-NIS) or
the Belgian Government. The authors only should be held responsible for their content.

Statistics Belgium launches this initiative hoping to raise the level of discussions on statistical
needs and methods, and to ensure a better dissemination of ideas and conclusions.

As a matter of convenience, Statistics Belgium Working Papers will be issued in the language of
the original paper.

The staff and all the officials of Statistics Belgium, and especially the authors, are anxious to
receive any comment or question on this paper.

Brussels,

Claude CHERUY
Director-General,
Statistics Belgium
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During the last decade, the literature on calibration (or (up-)weighting, grossing(-up)), has vastly been
growing. At the start of the nineties, some influential works were published. Model Assisted Survey
Sampling from C.-E. Sérndal, B. Swensson en J. Wretman, which appeared in 1992, is undoubtedly
one of the most important reference works for the survey statistician; the book is often called “The
bible of survey statistics’, or “The yellow book”. In this book the authors create a uniform framework
for the theoretical treatment of survey statistics. It encloses a review, within a single framework, of
survey methodology as it has been developed by themselves and by many other eminent researchers
before them. Moreover, they offered an efficient tool for future developments of that methodology.
Within the theory of generalised regression (GREG) estimation, they also treat calibration techniques.
In the same year, 1992, an article entitled Calibration Estimators in Survey Sampling, from J.-C.
Deville and C.-E. Séarndal, was published in JASA. This leading article suddenly opened an even
broader class of calibration techniques, of which GREG estimation is a sub-class. Many researchers,
theoreticians and practitioners, all around the world in public statistical institutes and universities,
have since then been inspired by the JASA-article, which resulted in a long series of studies on
calibration. Apart from the statistical theory of the generalised calibration model, it isimportant for the
present study to notice that Deville and Sarndal based their treatment on the fact that, for a given
sample, the calibrated weights can be found as the solution of a “convex mathematical programming
problem”. The latter ideais central in our study.

Indeed, theoretical as well as practical parts of this text are based on that convex mathematical
program — which we call the calibration problem (CP) hereafter — that allows to compute the
calibrated weights. The theory in this report is not a statistical theory of calibration, but rather a
theoretical approach of various aspects of the numerical solution of the CP. Our knowledge about
operations research and (linear) regression was very helpful in that respect. Searching for a rigorous
mathematical formulation, we ended up with a matrix formulation of the CP, a “language” which
proved to be very efficient for our purposes. As a result, we achieved a better theoretical
understanding, which in turn resulted in some new developments, which were interesting and helpful
both from the theoretical point of view and from the practical one. In fact, it would have been simply
impossible for the author to treat, within the assigned time period, so many specific surveys, if he
could not have based his reasoning on such a powerful formulation. We now try to explain this in
more detail by giving an overview of the different chaptersin this study.

Chapter | presents the statistical definition of calibration estimates of totals of random variables, i.e. as
weighted sums of obrserved values of the variable; the weights in this sum are the calibrated weights,
which have to satisfy certain linear constraints, the calibration constraints. Next we discuss some
popular estimation techniques and show that they fit into the calibration framework. These traditional
techniques are: (1°) the post-stratification technique, which assures that, within each post-stratum, the
estimated population size equals a pre-specified value, (2°) the raking (ratio) technique, in which
weights are such that marginal constraints in a cross-tabulation are satisfied, and (3°) the ratio
estimation technique, which assures that, for a given auxiliary variable (a proxy for the study variable),
the estimated total equals a given value. At Statistics Belgium, (almost) only the post-stratification
estimation technique has been applied until now.

In the second chapter, we present “a’ theory of generalised calibration. We discussed this aready here
before. Chapter Il is the most mathematical part of the text, and may therefore be less appealing to
some readers. For the author, however, it covers and reflects an important part of the work. The
mathematical approach, building on matrix theory, on mathematical programming, and on linear
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regression, finally resulted into a compact formulation of the CP. In section 11.C, thisled to a proposal
for a solution to the supplementary problem of determining an extreme lower bound L and an extreme
upper bound U for the correction factors (i.e. the ratios between the calibrated weights and the initial
weights) for certain sub-classes of the CP. Chapter |1 further deals with the existence and uniqueness
of the solution to the CP, and finally with the general algorithm that is the core of our software g-
CALIB-S. This algorithm, as well as its mathematical justification, takes largely advantage of the
properties of generalised inverses of matrices. If we could not have used that mathematical device,
then our own implementation, in SPSS® 9.0, for calculation of calibrated wei ghts would not have been
very original, and would moreover have been useless, aswell as virtually impossible to be realised.

Chapter 111 brings the reader back to statistics. We there return to more traditional methods, discussed
already in chapter I. On the other hand, without being occupied by specific practical extrapolation
problems, we demonstrate various ingenious applications of generalised calibration. Of course, this
brings us back to other researchers’ findings for complex situations. One of the strengths of thisreport,
in our opinion, is the way the problem is treated formally, which makes it possible to make new
derivations, in an abstract but controlled way, and to implement these later in a practical problem. Of
course, we do not want to state that theory precedes practice! Indeed, statistical methodology starts
with real-life statistical problems. It can however not be argued that one of them is more important
than the other. But it is definitely true that a good understanding of a concrete problemisonly possible
within a suitable framework, or model. An excellent illustration is our discussion in part 111.E about
simultaneous calibration on external information available at two levels. An important summarising
table in that context is table 3.8 in section I11.E. This table can be used as an outline or aide-mémoire
when setting up an application of calibration.

The central topic of this report in fact is our software g-CALIB-S, developed with SPSS® syntax
language. This software resulted from the need to have access to atool for improved calibration, using
more external information when estimating from surveys. Statistics Belgium only a few years ago
purchased SPSS®, so a little experimentation with calibration in SPSS® could not be postponed for a
long time. With CALMAR (section 1V.A.3) as an example, our colleague Etienne Waeytens started the
implementation of calibration as developed by Deville and Sérndal. When the author of this report saw
the syntax, he immediately proposed an improvement by replacing the matrix fuction inv() with ginv().
More matrix functions were then also exploited to create macros for construction of the calibration
design matrix. This way athorough “theoretical” study on the one hand, and serious improvements to
the software tools on the other, were onset. Implementation of the techniques in practice had to be
delayed for a while: the software first had to be reliable, flexible and user-friendly enough, and the
author had to study the different calibration problems Statistics Belgium is faced to.

Chapter 1V is meant to be amanual for g-CALIB-S. The potential user can find in that chapter how the
software has to be used, how g/he has to prepare the data that will be input to the software, and how to
interpret and use the results that are produced by the software. The chapter closes with some
comments on the software, pointing to some weaknesses of g-CALIB-S, but also to possible future
developments, either to improve or to extend our syntax modules.

Chapter V isthen devoted to implementation of generalised calibration, and consequently the software
g-CALIB-S, in daily statistical practice at Statistics Belgium. The author invited the responsible
statisticians in different statistical departments to propose practical applications of calibration, after
instructing them about the contents of the project. Many practical problems were put forward.
Unfortunately, they could not all be studied before the deadline for this report, so that only afew are
discussed in chapter V. From the beginning it was stipulated that the main goal was to find out how
current extrapolation practices fit into the generalised calibration framework, and to reproduce figures
that were obtained earlier. The author benefited alot from this task, since he was forced to understand
the various problems in detail, which often resulted in an improvement of the theoretical framework or
model. And the task has been successfully “finished”. However, we decided not to reproduce simply
figures obtained earlier, but to concentrate more on making suggestions for future work on calibration,
since the latter seemed much more interesting.
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The most interesting applications being dealt with are the Time Use Survey (TUS) in section V.D,
“generalised raking” of data on labour volume and labour compensation (LVC) in section V.F, and
the Structural Business Survey of enterprises (SBS) in section V.G. The first application (TUS) isan
illustration of using auxiliary information at two levels (here: households and individuals). It discusses
sophisticated and powerful calibration techniques, which will be useful for many other surveys too.
The second application (LVC) is a special one, due to the fact that the data were presented in cross-
tabulation format. A study of this application resulted in the discussion in section I11.C (and in some
sense also in section 111.D). The LV C problem therefore broadened our understanding of the problem
of calibration, which could not have been predicted when we first saw the data. The SBS case in
another way contributed to better insight into the problem: we had to tackle here the problem of over-
coverage of the sampling frame and how it is up to now being dealt with in the context of calibration.

The Travel Survey (TS) takes a special place in this report. Since we finally had access to a well-
designed basic data file for this survey, we were able to show that preparatory work on the data, to
make them ready for calibration, does not have to be that hard. Given a well-structured and well-
documented database, it is possible to set up a systematic and extensive preparation of data, which
may be reflected in SPSS® syntax files. Such programs, which are merely the implementation of
procedures and algorithms, can be used in and be adapted to other circumstances (at other time points,
or for other surveys) if necessary. So we can build on experience from the past.

The reader will not find many tables with figures in this report. That is because this study isfirst of all
amethodological one. This means that we have to point out what can be done and how to do it. Partly,
these instructions can be found in our SPSS® syntax programs, which the reader will find in appendix
(chapter VII). As a mathematical formula or equation, such programs often tell more about strategies
than along verbal description. So the reader isinvited to have alook at the programs when s/he wants
to start an application of generalised calibration. Obviously, these programs (apart from those in
section VII.A!) are not immediately ready-for-use in other circumstances, but they can serve very well
as a starting point. It can be noticed that they also need to be improved for the survey for which they
were intended.

We want to emphasize that the present study aims to initiate a new treatment of surveys at Statistics
Belgium. A lot of work still has to be done before implementation of the techniques is a fact.
Therefore we will organise some courses at our institute, both on advanced use of SPSS® and on
generalised calibration methodology and practice. This explains one of the main purposes of this
report: to provide our statisticians with some sort of manual or guidance when they start applying the
technigues in practice. Hence the pragmatic approach of this study.

Finally, we whish to state that this work should be a start of an in-depth study of calibration for each
survey were the techniques have to be used. We expect that survey specific studies on calibration will
be published in the future. This should be accompanied with a methodological evaluation of the
sampling-design, resulting moreover in the systematic and correct calculation of variance estimates,
which are an important means of quality evaluation for our surveys.
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LA GENERALITIES AND NOTATION — THE CALIBRATION PROBLEM

Consider a population U of size N, an initial sample sfrom U of size n, and a sample r of respondents
of size m. For simplicity in this chapter we assume that the sample s is drawn by simple random
sampling (SRS), although this is not a crucial assumption here; the response mechanism need not be
specified. Wehave: r 0§ U and 0O<ms<n< N . Theoveral sampling fractionis f =n/N and the
overall response rate or response probability is p=m/n. A subscript h (or j, etc) isincluded in these

notations wherever sub-populations and corresponding sub-samples are to be considered.

Let y be a study variable or variable of interest, with value y, for the k-th population element. Our
main goal is to estimate the population total t, = z y, of the variabley. A linear estimator for this
kU

total takestheform
fy:Zkak ; (1.1)
Lr

i.e. aweighted sum of available values for the study variable: the sum is over the respondents only.
The central idea of calibration is to calculate the weights w, for respondents k Or such that one or
more calibration constraints are satisfied. A calibration constraint takes the general form

Zwkxk =t,, (1.2)
Lr

where X is considered to be a variable, with known value x, for respondent k, and t, is a known

calibration benchmark for that variable. A benchmark often is the total of the variable x for the
population U, whence the notation t, , consistent with t, . Calibration benchmarks will often be called

calibration totals; a benchmark can sometimes be an estimate for a popul ation total.

A x-variable in this chapter is aways an indicator variable, corresponding to a sub-population of U,
with value 1 for elements k inside the sub-population and value O for elements k outside that sub-
population. An indicator variable is thus a membership variable for the sub-population considered.
Notice that in regression theory, these variables are often called dummies; they may correspond to
some category of a qualitative explanatory variable, or to cells induced by a cross-classification by
several qualitative explanatory variables. A subscript h (or j, etc) will be used in the next sub-sections
to distinguish indicator variables from each other.

The symbol zis used in this chapter to denote a quantitative variable. The value of this variable for
respondent k is denoted z, , and a benchmark corresponding to z is denoted t, .

The purpose of this introductory chapter | is to recall that some classical techniques of estimation of
totals of survey variablesy often can be studied as calibration techniques. |.e. we show that commonly
used estimators for t, can be written in the form (1.1), with weights that satisfy (1.2). The classical

technigues considered in this chapter are the post-stratified estimator, the raking estimator and the
ratio estimator. Statistical properties of these estimators of totals, such as (un-) biasedness,
consistency and efficiency are not considered here. By the way, the theory of generalised calibration
presented in the next chapter too is not a statistical theory!
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I.B THE POST-STRATIFIED ESTIMATOR

The post-stratified estimator, also called post-hoc stratification estimator by Barnett (1991), is
discussed at length in most textbooks; see e.g. Cochran (1977) and Sérndal et al (1992). This estimator
is defined as follows, given post-strataindexed by the subscripth=1, ...H :

1,:\y,ps = Z Nhyh ' (|3)
h

where y, = L z Y, IS the observed average of y in the h-th respondent sub-sample. This estimator
KT,

Ny

can be rewritten as fy’ps = Yy = z%yk , Which has the form (1.1) if w, :% for k Or,

h m1ktrh Kar
andh=1, ..., H.

Now, to each post-stratum h corresponds an indicator variable X, as pointed out in the preceding sub-

section. The post-stratified estimator of the population total of thisindicator variable, whichis N, , is
A N N

then equal to f, (=) ) X, =—"
" hZ m & m,

satisfy the H calibration constraints, which are of the form (1.2):

m, +Z&O =N, . In other words, the weights w, =Ny
R My m,

Zwkxhk =N, =t,  (h=1,.., H). (1.4)
Lr

This proves that the post-stratification estimator is indeed a calibration estimator. The weights

w, =—" are caled up-weighting factors, or extrapolation coefficients, in statistical practice; from
m,

now on we may call them calibrated weights.

Notice that w, Ny f.'p.', which suggests that extrapolation can be seen as a two-step
Ny M,

correction procedure, with correction for non-response in the first step (up-weighting from r to s), and

adjustment for sampling error in the second step (up-weighting from s to U). Moreover, this suggests

that post-strata ideally should coincide with sub-populations that are homogeneous with respect to

response behaviour. In other words, the post-strata membership variables x, should be suitable

determinants for non-response.

Post-stratification is not only considered in the context of SRS. Often in practice the sampling
situation is more complex, and care then has to be taken. This will be discussed in more detail in
section 111.B.1.



I.C THE RAKING ESTIMATOR

Post-strata may correspond to the categories of a qualitative variable, or to the cells in a cross-
classification by two or more qualitative variables. Consider, for simplicity, only two such
classification variables, and let subscript i be used to index the categories of one of the variables, and
subscript j for the other. The post-stratification technique can be used to estimate the total of a study
variable y if (1°) the sub-samples r; of respondents are al non-empty and if (2°) the sub-population

sizes N;; areall known.

Suppose that at least one of these conditionsis not satisfied. Then a possible solution isto use only the
marginal population counts N;, and N,;, and to apply the iterative method of raking (or iterative

proportional fitting) to find weights w; that, at convergence of the iterative procedure, satisfy the

. N,, .
constraints w, = NI\II+ for al i and w,; :Tj for all j, and consequently also w,, =1. The

summations denoted by the subscript “+” have to be interpreted as follows. Notice first that w; isa

common weight for all elements k Or; . Letr, = UrIJ , then the subscript “+” denotes summation over
adl elementsinr,, i.e. w, = ZW” = z ZW —ZmiJ ;. similar for summation over the index i.

The raking-ratio estimator for the total of any study variable y is then equal to
—NZ Zyk Zwkyk,wnh w, = Nw; for all k Or; . Hence the raking estimator has the

1
form (1.1). The |terat|ve procedure is not fully described here; we refer for instance to Deville et al
(1993). Notice that there is no explicit algebraic formulafor the weights.

To show that the raking-ratio estimator is a calibration estimator, we have to show that the weights w;

satisfy some calibration constraints. Therefore we only have to show that the above-mentioned
constraints can be rewritten as calibration constraints. To that end, we define two sets of indicator

variables: variables x\, say, corresponding to the categories of the first classification variable, and
variables x(-z) , say, corresponding to the categories of the second classification variable. It isthen easy

to verify that t g, z XV =N, foranyiandt e ZX(Z) =N, for any j. Finaly, we derive the

following calibration constraints for the weights w, :

1 — .
z Wi Xi(k) = t)g(l) any |
(o

? ' (1.5)
Zwkxjk Sty any |
T ]

This means that the raking estimator is a calibration estimator. More about raking, and its relation to
post-stratification, will be discussed in sections I1.B.2 and 111.C. It may be noticed that the raking
weights are not just any solution of the system (1.5), but avery special one. Thiswill be discussed later
in the context of generalised calibration.



I.D THE RATIO ESTIMATOR

Consider now the situation where a quantitative variable z is known for al respondents k, and the
population total t, isknown aswell. Theratio estimator of thetotal t, of astudy variabley is defined

(still under SRS) as

—

tyra =

x Yk = Zkak ) (1.6)
Kir

Xy &7

™

with constant weights w, = —=*— (k r ). To show that this ratio estimator is also a calibration
Xy
k'Cr
estimator, we simply have to notice that the weights are satisfying trivially the single calibration
constraint

fx,ral = Z Wi X =tx ' (|7)
kLr

The ratio estimator works well if the linear (population) regression model E(y, ) =Bx, (through the

origin) fits well. Notice that (1.7) does have many solutions; the one leading to the above constant
weights (under SRS) is a particular regression estimator if the variance structure of the population

regression model is determined as V(y, ) = 0°x, . We refer to Sarndal et al (1992) for a detailed
discussion of ratio and regression estimators.

The ratio estimator is thus a particular calibration estimator. However, it is not covered by the theory
of generalised calibration as presented in this text. That is because we have worked throughout with a
dightly simplified version of the generalised calibration model introduced by Deville and Sarndal
(1992) and Deville et al (1993). More about this can be found in section I1.A; see aso IV.C.2.viii.



A theory of generalised calibration






ILA THE GENERALISED CALIBRATION PROBLEM AS A MATHEMATICAL OPTIMISATION
PROBLEM

Consider a probability sample s of size n from a population U of size N. Let the n sample elements be
selected according to a sampling design with positive first order inclusion probabilities T,,..., T, for

all elements in U. This means that only random or probability sampling is being dealt with here.
Where needed we shall also assume that the second order inclusion probabilities m,, (k,1 =1,...,N)

are known. With these two conditions, the sampling design is said to be measurable (Sérndal et al,
1992).

Suppose that measurements on m auxiliary or calibration variables are available for al sample
elements; let x, be the vaue of the j-th calibration variable for the k-th sample element

(J=1....mk=1...,n). It is assumed that qualitative variables are already transformed into sets of
indicator variables, etc. Finaly, the population totals t; (j =1,...,m) for the calibration variables must
be available. The calibration problem consists of adjusting some initial weights d,, resulting in
adjusted or calibrated weights w, =g,d,, where g, are the adjustment factors or g-weights. The

initial weights often are the sampling weights 1/ 1, , but these could aready have been corrected for

non-response before calibration takes place. Notice that s might be a respondent sample, instead of an
initial sample.

The generalised calibration problem, i.e. the problem of calculating the calibrated weights or the g-
weights for agiven sample s, can be formulated as a hon-linear optimisation problem as follows.

(C1) Minimisethe distance Z de[%] ,
=1 k

n
(C2) subject to mcalibration constraints zwkxkj =t; (j=L....m),
k=1

(C3) and, occasionally, subject to boundary constraints Ls%su (k=1,...,n), with
k
0<sL<1<U.

The so-called distance function G is measuring the difference between the g-weights g, =w, /d, and
1. This function must satisfy the following regularity conditions. G(.) is strictly convex and twice
continuously differentiable (on the interior of its domain); G(1) =0, G(.)=0; G'() =0 and
G"(1) =1. Theinverse of the function G' is called the calibration function F(.) =G'™(.), whence
F(0)=1.

Deville and Sérndal (1992) have defined a slightly more general model, by incorporating an additional
factor /q, (g, >0) for element k ([Is) in the objective function in (C1). |.e. to obtain their model we
should replace (C1) with the following

n
(C1) Minimise the distance 3 ie[ﬂ).
& \d
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The ratio estimator in section I.D isaspecia case of an estimator for which the calibrated weights are
based on the calibration problem (C1')—«C3), but not of (C1)—«C3); see Deville and Sarndal (1992). As
mentioned in section 1.D we work throughout this text with the simplified model (C1)—C3). It would
however be straightforward to incorporate the factors g, throughout; see section 11.B for more details.
Our software too can easily be extended: see IV.C.2.viii.

(C3) seems to indicate that the g-weights are scattered around 1 (a g-weight g, equal to 1 means that
no correction to the initial weight is needed, for element k). In order to make the above optimisation
problem feasible, particularly by appropriate specification of the bounds L and U in (C3), aglobal a
priori adjustment to the initial weights may be necessary, making the implicit assumption of g-weights
that are scattered around 1 more plausible. We ignore this secondary problem in our theoretical
exposition, but have incorporated such an overall correction factor in our software. This factor is
called the scale (parameter); it is discussed further in section [11.A.2.

The distance function G, or, equivaently, the calibration function F, can be chosen conveniently,
considering practical properties of the resulting g-weights. Deville et al (1993) introduce four different
“methods” corresponding to four different distance functions: (1) the linear method with quadratic
distance function and linear calibration function, (2) the raking ratio or multiplicative method with
exponential calibration function, (3) the truncated linear method with quadratic distance function and
linear calibration function, and (4) the logit method with logistic calibration function. An overview is
presented in table 2.1, together with some properties and the corresponding calibration functions. The
following notation is used: (= fo 4o ); & (G ). Deville and Sarndal (1992) have considered a
few more distance functions.

Table 2.1 Distance function G, additional constraints (C3) and calibration function F for four
calibration methods: (1) linear method; (2) multiplicative method; (3) truncated
linear method; (4) logit method

Distance function G(Xx) Additional Calibration function F(u)
constraint (C3)
1 -1)? None 1+u forull
W& 21) for x I
(2 | xIn(x)—x+1 for x M ; None e forulD
-X+1 for x=0
@ | (x-27° xO[L,U]with | 1+u foruld[l- LU 1]
> for x (I 0sL<isU |L foru=L-1
U foru=U-1
“) (x—L)InX_L+(U—x)InU_X}A‘1 None LU -9 +U(1-L)e™
) i for XUD_(E u) U=D+@-L)e”
’ for u
(U - L)|nU — L}A'l for x< L
_ . uU-L
(U-L)InY L}A‘l for x=U where A= U1
with 0s L <1<U
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Often a quadratic function is used, i.e. G(x) =2(x —1)2; the calibration method is then said to be
linear. Estimators based on this method are generalised regression (GREG) estimators. A
disadvantage of the linear method is that the calibrated weights can be negative. Other choices of G
can force the calibrated weights being positive. Under the linear method, the additional constraints
(C3) can be used to restrict the g-weights: this is the truncated linear method (3). Notice that Calmar
(Sautory, 1993) and Bascula (Nieuwenbroek, 1997) are using different algorithms to implement (C3);
our implementation isasin Camar.

The calibration methods (1) to (4) are compared in figures 2.1 and 2.2. Figure 2.1 shows the distance
functions G. Figure 2.2 shows the calibration functions F. We have set L = .15 and U = 1.4. Notice
that the domain of the logit distance function is[L,U]. We will show later that the g-weights g, are
equal to F(u,), where u, depends on the auxiliary information and the initial weight for sample

element k. Thus the shape of the calibration function determines the adjustments that are made by the
calibration technique. The figure shows that methods (1), (3) and (4) are very close to each other
within some interval for u. Outside this interval methods (3) and (4) are truncating the adjustments
factors. Method (4) is doing this more smoothly than method (3). Method (2) tends to shift the g-
weights upward in a systematic way, compared with all other methods; the u-range where the value of
its calibration function is close to that for the other methods is rather small. It may be expected that the
results from methods (1), (3) and (4) are close, as far as the g-weights are not extreme (i.e. not to much
different from the central value 1). The results from method (2) may be substantially different.

Fig. 2.1 Comparing four types of distance functions G

1.2 G(X)

0.8
0.6 -
0.4 -

0.2 -

0.00 0.50 1.00 1.50 2.00 2.50

(truncated) linear raking ratio ---&--- |ogit

- 11 —



Fig. 2.2 Comparing four types of calibration functions F

31 Fu)
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I1.B TERMINOLOGY AND NOTATION

We now introduce some matrix notation. This is used extensively in the sequel, since it makes the
mathematical treatment more compact. Notice that alot of mathematical formulations and derivations
are similar to the mathematics for (linear) regression methodology. So the reader may not completely
be unaware of the following notations. Anyway, we would like to encourage the reader to learn to read
the mathematics in the rest of this report, as we believe that it may help him/her to understand more
thoroughly the procedures of generalised calibration.

We define:

= theauwxiliary mvector for the k-th sample element X, = (X, X )

* then-vector of initial (sampling) weights d = (dl,...,dn)T;

» then-vector of calibrated weights w = (w,. ..,Wn)T :

= then-vector of g-weights g=(g,,..., gn)T .

» the nxm (calibration) design matrix X :(Xl,...,Xm), where X; =(x1j,...,xnj)T is the j-th
column (i.e. the vector of n measurements on the j-th calibration variable) and x| is the k-th
row;

= them-vector of population totals t =(t,,...,t,) ;

» then-vectorof I's: 1, =(1,...0)";

* thenxninitial weights matrix D = diag(d) with k-th diagonal element d,;

= thenx ncalibrated weights matrix W = diag(w) with k-th diagonal element w,;

» thenx ng-weights matrix G = diag(g) with k-th diagonal element g,;

= avector of zeros 0=(0,... ,O)T , whose length follows from the context;
» theidentity matrix |, whose dimension follows from the context.

Notice that, for example, diag(d)l,=D1,=d. Then we have W=DG=GD and
w=W1, =Dg =Gd.

The calibration constraints (C2) can then be written as X 'w=t, or X'"W1, =t, or X'Dg=t, or
finaly X"g=t, where X =DX is the expanded design matrix, i.e. the matrix with elements

X
X; = d;X; :# (provided the initial weights are the sampling weights). These are all linear systems

with m equations in n “variables’ (either the calibrated weights or the g-weights). If the calibration
system is consistent, then it has at least one solution w* (or g*). This means that the auxiliary
information is not over-identifying the weights, or that there is no contradiction in the calibration
constraints. On the other hand, as we will see later, some of this information may be redundant.
Formally, this means that the design matrix X need not be of full rank, although it will be assumed
that there are more rows than columns in thismatrix: n=m.

The distance or objective function in (C1) can be written shortly as D(d,w), to emphasise that some

distance, D, between the initial weights d and the calibrated weights w, is considered. Notice that
D(d,w) is a weighted sum of distance measures G(w, /d, ) = G(g, ); the k-th weight in this sum is

the initial weight d, . Thus: D(d,w) = deG(Wk/dk) = deG(gk). The quantity G(g, ) measures
ks ks

the distance between the initial weight d, and the calibrated weight w, , or, as mentioned before,
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between the g-weight g, and 1. If we now write G(g) =(G(g,)...., G(gn))T, then the objective
function becomes D(d,w) =d'G(g).

Finally, the additional boundary constraints (C3) can be written shortly as g[@ 5, where Qg isthe
bounded subset [L,U]n of the Euclidean space 0". If, more generaly, Qg is allowed to be any,

bounded or unbounded, subset of 01", making it explicit in which area the g-weights are looked after,
either implicitly through D or explicitly, then any calibration problem (C1-C2) or (C1-C3) can be
written briefly as

{minD(d,w);X"w=t,g[@ 4}.

It follows from the above that the calibration problem alternatively can be formulated in terms of the
g-weights:

{mind"G(g); XTg=t,g@ ,}.

More details about the calibration problem, and further specification of the set Q isfound in the next
section 11.C.

The extended model (C1')—(C3) (see section I1.A) can aso be formulated in matrix notation. We
therefore introduce the matrix Q = diag(q), i.e. the diagonal matrix with k-th diagonal element g, .

Then Q™' = diag(1/ q, ), and the objective function in (C1') can then be written as d"Q'G(g). So the
model (C1')—C3) can be formulated in matrix notation as

{mind"Q™G(g); X g=t,g0Q,}.
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I.C EXISTENCE AND UNIQUENESS OF A SOLUTION TO THE CALIBRATION PROBLEM —
THE BOUNDARY PROBLEM

In the previous section, we have formulated the generalised calibration problem as a mathematical
programming problem, in terms of the g-weights or correction factors g, as follows:

{mind"G(g) XTg=t,g@ 4} (I1.2)

We aso define Q. ={gM "X t}; this does not depend on the calibration method. The set
Q. n Q; is the feasible region for the mathematical programming problem (I1.1). For each of the
calibration methods, we can easly specify the feasible region Q. n Qg first, and, given
Q. ={gm "X t}, we then derive the set Q. Table 2.2 lists the sets Q¢ n Q and Q for the
four calibration methods (1) to (4).

Table2.2 Thefeasibleregion Q. n Qg and the set Qg for four calibration methods:

(1) linear method; (2) multiplicative method; (3) truncated linear method;
(4) logit method

n

Q. nQ, Q.
(1) {om "X% t} 0
@ | {gm " X% tmy 0} {0 "2 ¢ [& ¥O ™
@) | {gm "X% tLx g UL} |{gm "Lk g Ulg [LU]
@ | {om "X% tLk g UL} |{gm "Lk g Uiz [LUT

The feasible region Q. n Qg is defined by a (finite) set of linear equality and/or inequality
constraints. Hence, this set is convex. The feasible region is also closed.

Since each linear equality constraint — a calibration constraint! — can equivalently be replaced with two
inequality constraints, the feasible region Q. n Qg is the intersection of a finite number of half-

spaces, and therefore called a polyhedron (Cameron, 1985, p.31).

It follows from the definition of the (scalar-valued) distance functions G (see table 2.1), that, for any
calibration method, the objective function d"G(g) in (11.1) is strictly convex on the corresponding set

Qg, and therefore also on the corresponding feasible region Q. n Q. Moreover, it is easy to see that
the reduced problem {min dTG(g); g@ B} isatrivia one: the solution always exists, is unique, and

is equal to g=1,. Notice that we assume throughout that 0<L <1<U for method (3) and
0<L<1<U for method (4). It follows then that Qg never is empty. For n = 2 we have displayed, for
each calibration method, in figure 2.3, the surface d"G(g) on aset [0.15, 3]2, which contains 1,.
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Fig. 2.3 Thesurface d'G(g), for n = 2, on the set [0.15, 3]2
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The cdlibration syssem X'g=t can, in principle, be inconsistent. In other words,
Q;={gm "X t} can be empty. Then, the feasible region is empty and the optimisation
problem has no solution at all; the calibration problem is then said to be infeasible. However, in
practice, the calibration constraints will be carefully set up, resulting into a consistent linear system
XTg=t. So, from now on, Q. is assumed to be non-empty, or, equivalently, X'g=t is assumed to
be consistent.

Although both the sets Q. and Qg are (assumed to be) non-empty, the feasible region Q. n Qg can
occasionally be empty. Then the optimisation problem (11.1) has no solution.

So let us now assume that Q. n Qg isanon-empty feasible region, i.e. that the calibration problemis
a feasible optimisation problem. Since d' G(g) is strictly convex on the feasible region Q. n Qg, and

since g =1, is aways a solution of the reduced problem {mind"G(g); g[@ g}, it easily follows that

the convex programming problem (11.1) is bounded, which means that it has a finite optimal solution.
Moreover, it follows immediately that this solution is unique. Notice that the calibration constraints do
not necessarily have a unigue solution. The solution of (11.1), if it exists, is the one that satisfies the
calibration constraints and, in some sense, provides a minimal adjustment for the initial weight of each
sample element.

One practical problem remains to be discussed. We have assumed that Q. is non-empty. For the

linear method this set is also the feasible region. Hence, if the calibration system is consistent, then a
solution to (I1.1) aways exists if the linear method is used. For the multiplicative method, the
assumption of non-empty feasible region implies that the calibration system not only must have a
solution, but that at least one non-negative solution (g=0) exists. This is not necessarily true,
although it is a desirable property of the g-weights. The existence of such a solution cannot be
guaranteed; if it doesn’t exist, the feasible region is empty. The problem of whether the feasible region
is empty is even more difficult for the truncated linear and the logit method. Then, although it may be
assumed that the calibration system is consistent, one has to choose the bounds L and U such that the
feasible region is non-empty. In the statistical literature on generalised calibration, one argues that L
and U should be chosen arbitrarily. If a solution exists for the chosen values, one might consider a
possible “improvement” of L and U. “Improvement” should be understood as an increase in L and/or a
decrease in U, in order to restrict the g-weights or adjustment factors further. This process of

tightening [L,U]n is, according to the literature (Deville et al, 1993; Sautory, 1993), atrial and error

procedure, and consequently can cost a lot of computer time, since for each choice of the bounds, the
full calibration model (11.1) hasto be solved, which isitself an iterative procedure. We here propose an
alternative, more economic, approach.

For illustrative purposes, consider an extremely small (and unrealistic) calibration problem:

{mind"G(g); XTg=t,g 0Q,}

. G(g) . Q) _
_{mm(Z 4)[G(g2)} 1 4)(gzj-7, L<g,0, su}. (11.2)

:{min ZG(gl) +4G(gz); 0, +49, =7,L <g,,09, SU}
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Thus we have n = 2 (2 sample elements) and m= 1 (1 calibration constraint). The distance function G
need not be specified. If we choose L = 0.5 and U = 3, then a graphical representation of the single
calibration constraint, the set Qg , and the feasible region for the problem (11.2) isasin figure 2.4.

Fig. 2.4 Calibration constraints and feasible region for problem (11.2)

6 02
5 4 .
— — Constraint(s)
a4 S e Bounds
gl=92
3 iy ; ® Target
P : Minimal Ball
. —~— '
14 -~ -~ -
--------------- ~ -
O T T \\ — 1 gl
0 2 4 6 8

The calibration system is consistent, since there is only one calibration constraint; Q. is the straight
line corresponding to this constraint. The big square bordered by a dashed line (labelled “Bounds’ in
the legend) is the set Q, =[L,U]? =[0.5,3]2. For this choice of L and U the feasible region is non-

empty: it is the line segment on the straight line inside the square. By increasing L and decreasing U,
many squares can be found such that the feasible region is non-empty. The small squarein the graphis
aminimal square, in the following sense: it is the smallest square that contains the so-called “target

point” 1, =(1 1)T and a minimum number of points (here only 1) on the calibration constraint Q.

The target point is introduced because of the assumption L <1<U, whence the square Qg = [L,U ]2
must contain the target. The opposite corner point, on the calibration constraint Q. , isin some sensea

point on Q. that is closest to the target. Notice that this point need not be on the line g, =g,, in

general. The distance between the target and the opposite corner point is measured by the maximum-
norm (or L, -norm). For this norm, the points at the same fixed distance from a fixed point are on a

square, with the fixed point in the middle. In other words, aL, -ball is a square. Once the “closest”

point (or points) on the calibration constraint(s) is (or are) found, the largest L and the smallest U can
easily be calculated as, respectively, the minimum of the co-ordinates of the target point and the
closest point(s) on the calibration constraints, and the maximum of those co-ordinates. These values,

L and U say, determine the minimal ball [L* ,U*]2 .
We now generalise the technique introduced in the example. Using the maximum-norm, to find a point

on the calibration constraints, as close as possible to the target point 1,, we solve the following
mathematical programming problem:

{min max|g, 1 Xngt}. (11.3)

I<ks<n
Suppose gg = (Gorr-»Gon) isasolutionto (11.3), thenwefind L and U from:

- 18 —



L =min{L, g, Jon }

. . (11.4)

U™ =max{L,go,---»%on }
Notice that if (11.3) has a solution, then the original problem (11.1) also has a solution. Hence problem
(11.3) can be used to find out whether the feasible region of the original problem, for appropriate L and
U in the truncated linear and the logit method, is empty or not. Therefore, it can be used to check
whether the calibration constraints are consistent or not.

L in (11.4) can be negative. To avoid negative L (and negative final g-weights), (11.3) can be
modified into:

{min max|g, —1; XTg=t,gzo}, (11.5)

I<k<n
but then existence of a solution to (I11.3) does not guarantee existence of a solution to (11.5).

Strictly speaking, L in (11.4) can also be equal to 1. Then, when using the logit method, one should
set L just alittle bit smaller than 1, since otherwise the logit distance G is not well-defined. A similar
remark holdsfor U™ and U.

It is interesting to mention that (11.3) (and similarly (I11.5)) can be reformulated as a linear
programming (LP) problem:

{minz;XTg:t,gk—lsz,l—gksz}. (11.6)

The simplex algorithm might be used to solve this LP problem, after a final transformation into a
standardised form. Implementation of this algorithm is not really difficult, although pivoting is not a
technigue that has to be programmed daily. If one considers the implementation of this algorithm to
solve the LP problem, then it should be investigated how data storage can be reduced. The revised
simplex algorithm could be a solution (Cameron, 1985); Brickman (1988) gives a nice and
illuminating discussion of the simplex agorithm, based on what is defined as condensed (simplex)
tableaux (Brickman, 1988, p.9).

We have used the target point 1,, in the above discussion. This does not restrict the applicability of our
ideas, or of our software. Justification of this special target point is related to the scale parameter,
introduced in section I1.A. So any point in the n-dimensional Euclidian space could serve as target
point.

We fedl it would be very useful to solve (11.3) (or (11.6)) or (I11.5) immediately after defining the
calibration constraints. It would be great if that were possible in almost real-time. One would then
have a clear indication of possible values for the lower bound L and the upper bound U, if these were
to be set, which is the case if the logit or truncated linear method is finally chosen. Moreover, solving
this problem gives a lot of information on the central problem (I1.1) itself. We strongly believe that
this information will help to set up the final calibration problem, from which the final g-weights will
be obtained, and to make the statistician more confident about the solution of the calibration problem.

We have not yet programmed an algorithm to solve (11.3) or (11.5). However, for small problems one

can use Microsoft Excel, which has a very powerful optimisation tool, called the Solver. We have used
thisto obtain the results for the above example. Figure 2.4 also has been created with Microsoft Excel.
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I.D NUMERICAL SOLUTION TO THE CALIBRATION PROBLEM: THE BASIC ALGORITHM

Recall that the constraints g[@  in (11.1) are rather implicit for methods (1), (2) and (4). To develop
the basic algorithm for solving the calibration problem we will therefore ignore these constraintsin the
present section. So we consider now the ssimplified calibration problem

{min D(d,w); XTw = t} or {min d'G(g); X"g= t}, (I.7)

which is a convex mathematical programming problem, with strictly convex objective function and
linear equality constraints. A solution is assumed to exist (see section 11.C).

The method of solving (11.7) is straightforward and well known, using the technigue of the Lagrange
multipliers. Let A =(A,,..., )\m)T be the vector of Lagrange multipliers. Defining the Lagrangian

function L(w,A)= deG[%)+7\T(XTW—t), it can be shown that the (n+m) x (n+m) system

k=1 k
o =0, oL =0 transforms into the following m x msystemin A :
ow OA
®(A)=Y diF(xAJ, —t =X"W(A) -t =0, (11.8)
k=1

where w(A) isthe n-vector of calibrated weights, with k-th component defined as:
W, =W, (A) =dkF(XI)\) =d, g (A) =d,gy- (1.9

In matrix notation: w(A)=DF(XA). The Lagrange multipliers A =()\1,...,)\m)T can be obtained by
solving iteratively the non-linear system ®(A)=0 of m transformed calibration constraints. The
formula (11.9) alows calculating the final calibrated weights, once the Lagrange multipliers are found.

Notice that g, = F(x{A)=w, /d, , or g(A)=F(XA). To solve iteratively the system of non-linear

equations (11.8), the Newton-Raphson method is used. This is based on a first order Taylor series
expansion of the left hand sides ®(A), resulting into the following set of updating equations:

AO =AY — (@' (ACY)) @A), (11.10)

which allows calculating successive updates A" (1 =1, 2, ...) for the Lagrange multipliers A , starting
frominitial values A© . It is convenient to start from A(¥ =0, asit will be seen later. At each iteration
I = 12..., w@A"?Y)=DF(XA"™) is first evaluated, from which then the mrvector

dJ(A("l)) = XTW()\(l_l)) ~t and  the  matrix o '()\("1)) = XTW()\("l) )X . where
W()\("l)):diag(w()\("l) )) (see Proposition 11.4 in section II.E.4), are calculated. Evaluation of

equation (11.10) involves computation of a g-inverse (d)'()\("l) ))_ of the m x m matrix ®'(A"™Y).

The usage of g-inverses turns out to be a very efficient mathematical device in practice. We comment
on thisin the next paragraphs.
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The following general agorithm isimplemented in our SPSS module g-CALIB-S:

BASIC ALGORITHM

Stepi Initialise the Lagrange multipliers: A‘® =0. The initial value of the calibrated weights
is w® =DF(XA®)=D1, =d.

Stepii Caculate the first update of the Lagrange multipliers from formula (11.10):

A® =~XTDX) (X"d~t), and calculate the first updated value of the calibrated
weight vector w® =DF(XA®). Let|=1.

Stepiii If convergence is attained, then go to Step vi, otherwise continue with Step iv.
Stepiv Let WO =diag(w"). Calculate @ =X"w® ~t and &' =X"W®X.
Step v St | to |+ 1 Caedae AO=ACY-(@0P) @Y, or

AD =20 —(XTWODX) (XTw!™ ~t). The new update for the calibrated weights
is w =DF(XA") . Return to Stepiii.
Step vi Thefinal solutionis w™ =w® =DF(XA") =Dg(A").

Converge is attained if absolute change in successive updates of the g-weights is smaller than a pre-

specified tolerance level & > 0, i.e. if max gﬁ')—g,(("l)|ss. This maximum-norm criterion is
<k<n

implemented in g-CALIB-S. Alternative convergence criteria could be implemented; e.g.
w — -
k k
Wl((|—1)
not compared the performance of the algorithm for different convergence criteria. The maximum-

norm criterion (for the g-weights) is also implemented in Calmar (Sautory, 1993).

max

<e, where||.| is the Euclidean norm. We have
1<ksn

<eg,or H(wm WP w) 1

Before we proceed with the inclusion of the additional constraints g [Q g, resulting into an extended
algorithm, we notice that two matrices involved in the calculation are generaly not uniquely
determined. First, there is the design matrix X. The reader will know from linear regression that a
design matrix for a given regression problem can take different forms; we here have a similar problem.
Second, as we discuss in section I1.E, a g-inverse of a given matrix is generally not unique. The next
section I1.E is completely devoted to a very technical in-depth treatment of these identification
problems. More specifically, we will demonstrate that the algorithm is invariant for both the choice of
the design matrix, and for the way of computing g-inverses.
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IL.E MATHEMATICAL JUSTIFICATION
I.E.1 Preliminaries, and results from linear regression theory

The theory of generalised calibration is in many respects similar to the theory of linear regression,
which in turn uses a lot of results from matrix theory and the theory of linear transformations. In the
next paragraphs we will justify the algorithm to solve the generalised calibration problem. Asit will be
seen, knowledge of matrix-based theory of linear regression will be very helpful. So we repeat here
below basic concepts from matrix theory and linear regression. We consider real matrices only.

Linear regression theory is also useful in advanced theoretical research on the properties (weaknesses
and strengths) of calibration estimators. See for instance Chambers and Skinner (1999) , where it is
argued that “the choice of calibration constraints is synonymous with an implicit linear model
specification for the regression of the survey variable on the auxiliary variables defining these
constraints’. Deville (2000) chooses for a treatment based on generalised linear modelling to justify
calibration as a technique to correct for non-response. Generalised linear modelling (Francis et al,
1993; Lindsey, 1997) has alot in common with traditional linear regression modelling.

NOTATION AND BASIC MATRIX RESULTS

For any n x mmatrix A, M(A) denotes the subspace of (1" generated by the columns of A; itis called
the range space or column space of A. The dimension of this subspace isthe rank r(A) of A; thisis at
most mif n=m.

A generalised inverse or g-inverse of a matrix A isany matrix B that satisfies ABA = A ; ag-inverse
of a matrix A isusualy denoted as A™. A reflexive g-inverse of A is a g-inverse that also satisfies
A"AA™ =A". The Moore-Penrose inverse of A is the reflexive g-inverse, denoted A™, for which

both AA™ and A*A are symmetric. The Moore-Penrose inverse always exists and is unique. Other g-
inverses are not necessarily unique. The Moore-Penrose inverse, as well as any other g-inverse, isthe

ordinary inverse, denoted A, if A is square (n = m) and has full rank: r(A) = n = m. The Moore-
Penrose inverse can often be obtained directly (through a simple matrix function) in software packages
(SPSS, 1999b; SAS, 1990).

An important general result for g-inversesisthe following (Rao, 1972; (vi)(c) in 1b.5):

I nvariance property of g-inverses
For non-null matrices B and C, BA™C is invariant for any choice of the g-inverse A~ iff

M(B")O M(AT) and M(C) O M(A).

In the discussion here below we recall alot of results from linear regression theory. Following Rao
(1972), we use the short notation (y,XP,o”l) for the fundamental linear regression probleminwhichy

has the expectation E(y)=XB and dispersion matrix D(y)=o?l (o >0). Similarly, the generalised
linear regression problem is denoted as (y,XB,X), where £ is a positive definite (pd) dispersion
matrix. The dispersion matrix thus has an ordinary inverse ™ the latter then has a unique pd square

root =%, which is the unique matrix that satisfies 333 % =3 Of course 3 itsdlf has a unique pd
-1

sguare root >% Noticethat =2 =(Z%)
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ORDINARY LEAST SQUARES (OLS) ESTIMATION

Consider the linear regression problem (y,XB,o°l). The following results are well known; for more
details we refer to Rao (1972; 1b.5-6, 1c.4, 4a.6, 4i.4).

(i)

(i)

(iii)

(iv)

(v)

(vi)

The system of linear equations X =y isnot necessarily consistent. So an exact solution is not
being searched for, but instead we are interested in the OL S solution, which is the solution 3

that minimises the quadratic form (XB - y)" (XB -y).

The system of normal equations X' XB=X"y is aways consistent. The rank of X'X
satisfies r(X"X)=r(X"); also M(X"X)=M(XT)m ™.

A solution to the set of normal equations is B = (X™X) X"y, which is an OLS solution to the
regression problem. This solution is unique only if the design matrix X has full rank
r(X) =m; then the only g-inverse (X"X)  isthe ordinary inverse (XTX)_l.

The dispersion of the estimator B is 0?(XTX) . This shows that the g-inverse (X'X)  has
statistical significance.

The matrix X(X"X) X =P isinvariant for any choice of the g-inverse (X"X) . Hence the
OLS estimator § = Xf& =Py fory isunique.

The matrix P is idempotent (P> =P) and symmetric (P" =P), so P is an orthogonal
projection matrix. The estimator § =Py is the projection of y on the subspace

M(X)=M(P)[O0 " aong the orthogonal subspace M(lI-P)[D ". The latter space
contains the residual vector y —y = (I —P)y . This establishes a geometric interpretation of the
regression problem.

GENERALISED LEAST SQUARES (GLS) ESTIMATION

Now, consider the generalised linear regression problem (y,XPB,Z). The dispersion matrix X is
symmetric, but not necessarily diagonal, which means that the observations vy;,...,y, can be

correlated. For notational convenience we will assumethat X ispd (non-singular). This problem can be
transformed into the fundamental linear regression problem (y',X',1) (the fundamental regression

problem with o =1) by the linear transformation with matrix 377 ie y'= Z_%y and X'= 372X . The
previous results (i-vi) are generalised as follows:

(vii)

(viii)

The system of linear equations XB =y is not necessarily consistent. So an exact solution is
again not being searched for, but instead we are interested in the GL S solution, which is the

solution @ that minimises the quadratic form (XB-y)" Z(XB-y).
The system of normal equations X'Z'XB=X"Z'y is aways consistent. The rank of
XT3 X satisfies r(XTE7X) =r(X"); dso M(XTEX) = M(XTZH) 0 .
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(ix) A solution to the set of normal equations is Bgs =(XTZ7X) Xz y =(XTX) X Ty,
which isaGL S solution to the regression problem (y,XB,X). Asin (iii) this solution is unique
only if the design matrix X has full rank r(X)=m.

(x) The dispersion of the estimator g is (XTZ7'X) .
(xi) The matrix X'(X'TX') X' = Z_%X(XTZ*X)_XTZ_% =P' isinvariant for any choice of the
grinverse (X"Z7'X) . Obviously then TIP3z = X(XTZ?X) X" =P" isinvariant too,

Hence the GLS estimator §q, 5 = XﬁGLS =P’y fory isunique.
(xii) The matrix P' is idempotent and symmetric, so P' is an orthogonal projection onto the

subspace M(X') = M(Z_%X) =M(P') D ". The matrix P isidempotent (but generally not
symmetric), so P is a projection onto the subspace M(X). The estimator ¥ 5 = Py isthe
projection of y on the subspace M(X)=M(P") 0 " along the subspace M(I-P") 0 ".
The latter space contains the residual vector y =95 =(I =P")y.. The subspaces M(P") and
M(I - P*) are generally not orthogonal, since P* is generally not symmetric!

(xiii) For anyy, wehave Py = Z%P'Z_%y = Z%P'y' . This means that the orthogonal projection of y
by P* onto M(X) can be obtained by successive application of the projection by P' of the

linear transformation y' onto M(Z_%X) and the linear (back) transformation by 3% of the
latter projection P'y'.

I.E.2 Equivalent design matrices

A design matrix (in a linear regression problem as well as in a calibration problem) is not unique.
However, the result of the regression of y on a given set of explanatory variables should not depend on
the choice of the design matrix derived from those explanatory variables. This suggests the following
definition.

Definition 1

Matrices X and Z are equivalent design matrices if and only if M(X)=M(Z). The symbol “="
denotes equivalence of design matrices. Hence X =Z iff M(X)=M(Z).

In linear regression, the choice of the design matrix will have an effect on the interpretation of the
regression coefficients 3.

Hereis an example of three equivalent design matrices:

35
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Equivalent design matrices (for a given linear regression problem) may have different numbers of
columns, but always have the same number of rows (which is the number of cases or observations in

statistical problems). However, if X =Z , then r(X) =r(Z), which is the dimension of the range space
M(X)=M(Z). Now, we will write X(X"X) XT =P, (instead of P) for the projection on M(X),
given X. Similarly we write P,; Py = P, (instead of P'; see (xi) in the previous section) and

P, =P,.; P, (instead of P’; see (xi) in the previous section) and P, . The following result then
follows easily from the results (v) and (xi) on projection matricesin section I1.E.1.

Proposition 11.1
If X=Z then P, =X(X"X) X" =2(27Z) ZT =P, for any choice of the g-inverses involved.

Now let  be asin section I1.E.1, and write =2 M(X) for the image of the subspace M(X) under the
linear transformation 2. Obviously X ZM(X)= M(Z_%X). Then it follows immediately from

M(X)=M(Z) that M(Z*X)= M(Z7#Z). Thisleadsto the following result.

Proposition 11.2
If X=Z and X is any square symmetric pd matrix, then P, =P, and P, =P,, for any choice of the
g-inverses involved in the computation of the projection matrices.

Propositions 11.1 and 11.2 are formulated in a most general way, i.e. they are not only valid in a
regression context. We have recalled in the previous section more results from linear regression theory
than we need here or in the remainder of this text. Such results should of course be of interest to any
statistician, for whom this text has been written primarily. The reader with a statistical background
should therefore feel more confident with the results presented here after going through the
introductory section I1.E.1.

The following result is important in our justification (see sections |1.E.3 to I1.E.5) of the agorithm to
solve the generalised calibration problem. The result follows easily from proposition 11.2.

Proposition 11.3

Now we make a special choice for the matrix X, i.e. £ =W ™, where W is any pd square diagonal
weight matrix. Then for any pair of equivalent design matrices X and Z, the following equality holds:

X(XTWX) X"W =P, =P, =Z(2'WZ) Z'W, (11.12)

for any choice of the g-inverses.

Proposition 11.3 states a two-folded invariance property: invariance for the choice of the matrix X (the
design matrix in the context of linear regression or calibration), and invariance for the way g-inverses
are calculated. In the next sections 11.E.3-5, we use this result to show that the algorithm to solve the
generalised calibration problem has these invariance properties to, in each step of the iterative
procedure. In section 11.E.3, we treat the linear method, because it takes a specia place in the general
class of calibration methods: no iteration is required. Next, in section I1.E.4 we return to calibration
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problems of the simplified form (11.7) and the related Basic Algorithm. In section I1.E.5, finaly, we
generalise the Basic Algorithm to the so-called Extended Algorithm, which is appropriate for solving
the general calibration problem (I1.1), and we discuss the invariance properties for the Extended
Algorithm.

I1.E.3 Thelinear case

The problem is to solve {mindTG(g);XTg=t}, with quadratic distance function G. Then
G'(x) = x~1, the inverse of which is G'™ (u) = F(u) =1+u. Substitution of F(x;A)=1+X;A into

n
(11.8) makes that system linear in A: de(l+x[)\)xk—t:XTd +(XTDX)A ~t =0, where
=1

D =diag(d). Equivalently:
~(XTDX)A =X"d -t. (11.12)

That this system is consistent actually follows from the assumed consistency of the original calibration
system X "w = t. We then know from linear algebra (Rao, 1972) that

A =~(XTDX) (XTd -t) (11.13)

isasolution, for any g-inverse (X"DX) . No iteration is necessary. Interestingly, the solution (11.13) is
exactly the first update A™ that would be obtained from application of (11.10), with A(Y =0,
®(A?)=XTd~t and ®'(A?)=XTDX . Thus, for the linear method the iterative procedure already

converges after one step, which is awell-known property in generalised calibration methodology.

The solution A” is generally not unique, e.g. when X has not full rank, since X "DX is then singular
and has infinitely many g-inverses. However, it follows directly from the general invariance property

in section I1.E.1, with A=X'DX, B=X and C=X"d~t, that XA" = -X(X"DX) (X'd~t) is
invariant for the choice of the g-inverse. The k-th component of the m-vector XA™ is A", hence the
calibrated weights w, = d,(1+xgA") areinvariant for the choice of the g-inverse. In matrix notation:

w’ =D(1, +XX). If X does have full rank m, the g-inverse becomes the ordinary inverse (XTDX)_1

(provided all initial weights are strictly positive, as assumed). In that case, the solution A" is unique
too.

Moreover it follows from proposition 11.3 that the calibrated weights w =D(1, +XA") are
independent for the choice of the design matrix, for given calibration problem {min d"G(g); XTg= t} .
Notice that the g-weights in matrix notation are writtenas g’ =1, + X\’ .

The reader must be aware of the fact that under the linear method the solution A”*, and hence w* and
g can have zero and/or negative components. This is a major drawback of the linear method, while,
on the other hand, the method is very simple to implement, since no iteration is needed to compute the
solution. Moreover, the resulting calibrated estimators of totals of survey variables are the well-known
and interesting GREG estimators.
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I1.E.4 The simplified calibration problem

We now consider the general simplified calibration problem(11.7), as discussed in section 11.D. Notice
that the linear calibration problem is a special case. In section 11.D we have introduced the Basic
Algorithm to solve the simplified calibration problem. We now discuss some interesting properties of
this algorithm.

Propositions 11.4 and 11.5 follow by straightforward algebra.

Proposition 11.4
The mxm matrix ®'(A) can be written as ®'(A)=X"W(A)X =X'DG(A)X, where

W(A) = diag(w(A)) and G(A) =diag(g(A)) . It followsthat ®'(A) isasymmetric matrix.

Proposition 11.5
Theinitialisation A‘® =0 implies:
(i) gk(A(O)):F(XE)\(O)):l,Or g()\(o)):F(X)\(O))=1m;
(i) w(A©)=d,or W(A®)=D;
(i) ®A?)=XTd-t=t, -t;
(iv) ®'(A®)=XTDX, where D = diag(d).

The notation t,, =X "d usually denotes the so-called Trestimator or Horvitz-Thompson estimator for

the calibration totals t. This assumes that d is the vector of sampling weights, i.e. d, =Tt .
However, d may be any vector of initial weights, so t,, can be any vector of initial estimates of the

calibration totals t. It is aways assumed that the initial weights are al positive, i.e. probability
sampling is assumed throughout the text. In other words, we assume that D is pd.

Proposition 11.6
If w(A)>0, i.e. W(A) is pd, then @®'(A) is positive semi-definite (psd) with rank

r(®'(A))=r(X)<m.If both w(A)>0 and X hasfull rank, i.e. r(X) =m, then ®'(A) ispd.

If the rank of X is maximal, then no auxiliary information is redundant. The advantage of working
with such a calibration design matrix is that ®'(A) then has an ordinary inverse (®'(A)) . However,

although it is always possible, it is usually more difficult to construct a full rank design matrix.
Therefore we focus on the situation were r(X) <m. On the other hand, W(A) is always assumed to be

pd, which means that none of its diagonal elementsis zero or negative.
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Theorem 1.1

Suppose D and W(A) arepd, and let A® = 0. Then, for given simplified calibration problem(11.7), the

following expressions do not depend on the choice of the g-inverse involved or on the calibration
design matrix X:

(i) X(X'DX) X'D1,=X(X"DX) X'd
=X(X"W(A@)X) XTW(A)1, =X(X"W(A)X) XTw(AO);
(i) X(XTW(N)X) XTW(A)1, = X(XTW(A)X) XTw(X);
and, if the calibration constraints are consistent, this also holds for
(iii) X(X"W(A)X) t and X(X"DX) t=X(X"W(A@)X) t.

From proposition 11.3 it immediately follows that invariance holds for the expressions (i) and (ii). To
prove (iii), we assumethat w™ isasolution, and rewrite the expression as

X(XTWQA)X) t=X(XTW(A)X) XTw’

where W isthe vector suchthat w™ = W(A)W . The premise then follows with (ii). O

Theorem 1.2

If W(A) is pd, if the calibration constraints are consistent, and if A‘® =0, then at each step in the

iteration the updated estimates of calibrated and g-weights are invariant for both the choice of the g-
inverse used in the updating formula, and for the choice of the calibration design matrix X, for fixed
simplified calibration problem.

If moreover the iterative procedure based on (11.10) convergesto A”, then the solution w(A™) =w’ is
invariant as well.

We can write, from eguation (11.8) and the updating equations (11.10), and from proposition 11.4:
XA = XA - x(@'(AV)) o(A")
=XA® = X(XTWA)X) XTwA®)+X(XTWQA)X) t.

Notice that XA® =0. Thetermsin the right hand side are invariant for | = 0, because of theorem [1.1
(i) and (iii). So XA® isinvariant. Assuming then that XA") is invariant, theorem 11.1 (ii) and (iii)
imply that the right hand side in the expression for XA"*? is invariant, and so is XA"*". Finally,
9"V =1, + XA and w"? = D(1, + XA"*) areinvariant too. |
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The linear method is covered by theorem I1.2: it suffices to stop at | = 1, and therefore only
W()\ (0)) =D need to be pd, which indeed follows from the assumption of positive initial weights.

It follows from theorem 11.2 that we have the computationally interesting result that properties of the
iterative procedure (convergence rate, the solution, ...) do not depend on the way a g-inverse is
calculated or on the calibration design matrix chosen to represent the simplified calibration problem.
One can use therefore the Moore-Penrose inverse, which is available in the matrix language of SPSS®
9.0. Most packages that include matrix manipulation allow calculating g-inverses. SASYIML® is
another example. From a practical point of view it is interesting to be able to work with a design
matrix with linear dependencies between the columns. It simplifies either the preparation of these
matrices (if the software does not construct it automatically), or the implementation of its construction
from originally observed variables. The fact that the calibration design matrix may have many
equivalent representations is exploited utmost in our implementation of the generalised calibration
methodology. More about thisin the next chapters.

I.E.5 The general calibration problem: the Extended Algorithm

We now deal with the solution of the general calibration problem {min D(d,w); XTw =t, g@ B}, or

{min dTG(g);Xngt,gEQ B}, of which existence and uniqueness of a solution was aready

discussed in section I1.C. We present here below the Extended Algorithm that is implemented in our
software g-CALIB-S, and discuss invariance problems related to the use of g-inverses and the choice
of the design matrix X. The algorithm is an adaptation of the Basic Algorithm in section I1.D.
“Truncation” of calibrated weights means that, if some updated values w, are not between d,L and
d.,U, where L and U follow from the specification of Qg, then, if w, <d,L we set w, equal to d,L,
andif w, >d,U weset w, equal to d U. We assume herethat L > 0.

EXTENDED ALGORITHM

Step i Asinthe Basic Algorithm.

Stepii Asinthe Basic Algorithm.

Stepiii If necessary, truncate the update w) . The result is denoted as W' . Then W™ [@ . If
convergence is attained, then go to Step vi, otherwise continue with Step iv.

Stepiv Let WO =diag(w"). Calculate " =X"W" -t and &' = XWX

Step v Asinthe Basic Algorithm.

Step vi Thefina solutionis w" =W,

Converge is now attained if absolute change in successive truncated updates of the g-weights is

=)
smaller than a pre-specified tolerance level € > 0, i.e. if max|g( - g 2| <e, where g = " (k=

I<k<n K

1, ...,n).

We aready know that, for | = 1, w" =w® in Step ii satisfies the invariance properties. With
truncation as in Step iii, W =diag(W") is pd (since L > 0). Therefore, the update w") in Step v
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will satisfy the invariance properties, by theorem 11.1. This completely proves invariance in the
Extended Algorithm too.

Notice that, for the linear truncated method (4), the update w in Step v can be written as
w® = D(ln + X()\("l) ~(XTWOIX) (X Tw ! —t)))
= D(ln + XA - X(XTW X)) (X T —t))

=w( ™ -DX(XTWPX) (XTW!Y ~t).

Hence calculation of w involves both the non-truncated w' ™ and the truncated W', or (™.
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Back to the world of statistics
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I.A REFINEMENTS OF THE GENERALISED CALIBRATION MODEL
I1.A.1 Model formulae — Calibration strata

Wilkinson and Rogers (1973) have introduced a very convenient symbolic notation for describing the
linear structure in regression models. Their model language and algebra is, for instance, extensively
used in the software package GLIM, for fitting generalised linear models (GLMs) (Francis et al,
1993). See also Lindsey (1997) for systematic use of this language in applications. It was already
stated that calibration models have alot in common with linear regression models, which are a special
class of GLMs, so that it turns out that the same symbolic language can be used to specify
unambiguoudly the linear structure, i.e. the structure of the design matrix, of the calibration model.
Such a specification in the language of Wilkinson and Rogers (1973) will be called a model formula.
Notice that the structure of the design matrix is describing the structure of the calibration equations.

It must be noticed, however, that such a model formula does not specify how ultimately the design
matrix is (to be) constructed. Rather, a class of equivalent design matrices (section I1.E.2), or aclass of
equivalent systems of calibration equations, is defined by any model formula.

Consider qualitative calibration variables A, B, ... and a quantitative calibration variable Z. The
symbol «1» is used to denote the constant calibration variable (with value 1, or any other constant
value). Suppose that calibration is on the margina distribution of both A and B (in the population),
then the linear structure of the calibration model can be described by the model formula A + B. It can
easily be seen that the constant variable 1 may be included in the design matrix of such a calibration
model. Hence A + Bisequivalent to 1 + A + B. We prefer to include a column with constant value 1 in
the design matrix, whenever it is possible, and so we also prefer to include the constant term 1 in the
model formula, although thisis not strictly necessary.

If we wish to calibrate on the joint distribution of A and B (in the population), then the appropriate
model formulais A*B, or 1 + A*B. An equivalent model formulais 1 + A + B + AB. This formula
indicates that calibration ison the total population (size), on the population (size) in the categories of A
(i.e. calibration on the marginal distribution of A), on the population (size) in the categories of B (i.e.
calibration on the marginal distribution of B), and on the population (size) in the cells of a cross-
classification of A with B (i.e. on the joint distribution of A and B). It is because of the fact that if
calibration is on the joint distribution of A and B, then calibration is implicitly also on the marginal
distribution of both A and B, and, moreover, also on the total population size, that the model formulae
1+A+B+AB,1+A*B, and A*B are equivaent. The notation A.B was used so far to symbolise the
joint — and only the joint! — distribution of A and B, but, because of the above clarification, A.B and
A*B can, from now on, be used interchangeably. This means that we can say that our calibration
models are hierarchical: if higher order interaction terms are included, then all corresponding lower
order interaction terms are included too.

Each model term, be it explicit or not, in a model formula, implies an effect on the g-weights
g=F(XA) in the calibration model. Following linear regression (or GLM) terminology, we may say
that the model 1 + A*B =1+ A+ B + AB implies an overall effect (corresponding to the constant

term), main effects for each of the variables A and B (corresponding to the model terms A and B), and
an interaction effect of A and B (corresponding to the model term A.B) on the g-weights.

Having explained the basics of the symbolic model language, it will now be straightforward to
interpret the following model formula (and model calculus!), wherein C is a third qualitative
calibration variable:
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= 1+A*B*C=1+A+B+C+AB+AC+BC+AB.C
» 1+A+B*C=1+A+B+C+B.C
= 1+(A+B*C=1+A*C+B*C=1+A+B+C+AC+B.C=(1+A+B)*C

The very last expression, (1 + A + B)*C, is extremely useful in the sequel. It implies that the additive
model 1+ A + B isto be applied in each category of the third variable C. We wil say that the variable
Cisout-factorised. If amodel formula can be rewritten, such that one or more qualitative variables are
out-factorised, then calibration can be performed separately with a simpler model in each category or
cell determined by the out-factorised variables: simultaneous calibration of the entire sample is then
equivalent, i.e. results into the same set of g-weigths, to separate calibration with the simpler model in
the C-categories. The latter categories or cells are called calibration strata. Thus, in our example, (1 +
A + B)*C, the smple model 1 + A + B is applied separately to the sub-samples, or calibration strata,
corresponding to the categories of C. Calibration strata will play an important role in our calibration
software; see section IV.B for details.

Quantitative variables may be involved too in the calibration model, and the above model language
can be easily extended to incorporate such variables too. One peculiarity related to the constant term,
however, should be taken care off, as we will soon explain.

We start with the simple model Z, where Z is a quantitative calibration variable. This simple model is
meant to imply that calibration is on the total t, of a numerical variable, z say, in the population. The
formulafor the model wherein calibration is not only on the total of zin the entire population, but also
on the margina totals of z in sub-populations corresponding to the categories of a quantitative
calibration variable A, is Z*A, or Z + Z.A. Notice again the hierarchical structure of our calibration
models, however, Z*A does not imply a main effect of A, or an additional term A in the model
formula. If only the totals of zwithin A-categories, and henceforth aso the total of zin the population,
are used as calibration benchmarks, then it would not be correct to include the constant term 1 in the
model formula. Hence: Z*A # 1 + Z*A. The model formula 1 + Z*A, however, does make sense: it
implies that, again, the totals of z within A-categories, and henceforth also the total of z in the
population, are used as calibration benchmarks, but that also the total population (size) is a benchmark
value. More complex model formula can now easily be constructed, taking more than one qualitative
and/or quantitative variable into account. However, “products’ of quantitative variables should be
avoided; we then suggest to create a new variable first. The reader will now be ready to understand the
following expressions:

* A+B*Z=1+A+Z+BZ#1+A+B+Z+BZ
» AB*Z=Z+AZ+BZ+ABZ
» (A+B*C)*Z2=Z+AZ+BZ+CZ+B.CZ

It should be noticed that a quantitative variable cannot be a calibration stratum variable.

[11.A.2  The scale parameter

In section 11.A we have aready discussed the necessity of introducing a scale parameter: it can then
be argued that, for appropriate choice of the value of the scale, the g-weights (with respect to the
scaled initial weights) are scattered around 1, which justifies that the special target point 1, isincluded

intheset Qg; seell.A and 11.C. We now discuss this parameter, ¢, say, in more detail.

The scale must be strictly positive: @>0. The modified (scaled) model (in standard notation) is
defined as follows:
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{mind"G(g); X "g=t,g[@ 4}. (11.1)

The calibration constraints can be written aternatively as @X'Dg=t, or X' (¢D)g=t. Hence,
introducing the scale parameter can be seen as the multiplication of the initia (sampling) weights
d,(=1/m,) with the scale @. The calibration problem can then be solved starting from new initial

weights, the scaled (initial) weights @d. It will be clear that finally the solution, in terms of the
calibrated weights w, will not change, for given data. However, the g-weights are atered: if the
solution is g if no scale parameter is present (or ¢=1), then the new weights, after introducing the

scale, will be g/@. And then, we have indeed: w =@Dg/¢ =Dg. Notice that we could replace the
objective function in (I11.1) with gd "G(g), but this does not change the calibration problem at all.

Hence the value of @ is theoretically immaterial. Why then complicating things by introducing one
more parameter ¢@? The reason is rather of a practical, numerical, nature. We have experienced that
our software behaves better if avalue of ¢ iscarefully chosen (or calculated). Thisis particularly true

for the truncated linear and for the logit method. For some data sets, g-CALIB-Sislikely to fail easier
if g-weights tend to be large and if either the truncated linear or the logit method is chosen. For those
methods it seems to be better to assure in advance that the g-weights are centred on 1. This in fact
means that it should be possible to choose the region Qg such that it contains the point 1. But this

now indicates that our previous statement that “ ¢ istheoretically immaterial” is not completely right!
The truth is that, strictly speaking, the basic problem {mind"G(g); X'g=t,g[@ 4} should be
extended to {mind"G(g);(X'g=t, @@ 5}, or {mind'G(g)X"g=t,g0¢' Q= Qp}.
However, for the linear and for the multiplicative method, this essentially doesn’t change the region
Qg, since then either Qp =@ 'Qg = @(—,+0)" =(-oq+9" =Q, for the linear method, or
Qg =¢7'Qg = ¢[0,+)" =[0,+)" =Q, for the multiplicative method. For the truncated linear and
logit method we have: Qp =¢'Qg = ¢'[LUT] =[(§1L, (f)lU]n #Qg, in general, if @#1. It then
follows that (111.1) is a convenient notation, since in practice one will usually specify a desirable
region Qg in advance. A value for the scale parameter then has to be specified such that (111.1) is
feasible. In other words, it is possible that, for given Q, the problem {mind"G(g); X'g=t,g @ ,}

has no solution (and that the software fails), but that, for appropriately chosen ¢, the modified
problem (111.1) isfeasible (and that the software doesn’t fail).

The scale @ can be interpreted as a preliminary and overall up-weighting factor to produce a first
correction for non-response, given that it is calculated properly. If the constant term is (implicitly or
explicitly) present in the model, and if one of the calibration variables is this constant, x, =1, say,

then a reasonable suggestion is to calculate the scale from the formula: fpz b IA\I , Where Nsis

k s
kOs

an initial (Horvitz-Thompson) estimate of the total population size N, based on the sample s. If sisthe
respondent sample, then this fp is indeed the reciprocal of an estimated overall response rate. Of

course, the scale can be calculated from any other calibration variable. We discuss in chapter IV
section B how the software can be used to fix a value for the scale, or to instruct the program to
calculate the scale from the data (for each calibration stratum separately).
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11.B.1

GENERALISED CALIBRATION AND POST-STRATIFICATION

Complete post-stratification

Consider the following particular calibration problem:

A is a qualitative variable with a categories, and for each sample element k the vector
8. =(8,..,0)" indicates to which A-category element k belongs, since &, =1 if k
belongs to the r-th A-category and &,; =0 otherwise. Theindicator variables 8" (r =1, ..., a)

may eventually serve as calibration variables.

B is a qualitative variable with b categories, and for each sample element k the vector
& =(8g,,....0,)" indicates to which B-category element k belongs, since 8¢ =1 if k
belongs to the c-th B-category and &;, =0 otherwise. The indicator variables 87 (c =1, ...,
b) may eventually serve as calibration variables.

The Kronecker product &;° =8, 0&;, with ((r—1)b+c)-th component &g of this

krc

ab x 1 matrix (vector) being equal to &, x &¢., isthe vector of cell indicators in the complete

cross-classification by A and B. The indicator variables 8/ (r=1, ..., &, c=1, ..., b) may
eventually serve as calibration variables.
Let n2® be the number of sample elementsin cell rc in the complete cross-classification of the

sample by variables A and B. The sub-sample corresponding to this cell is denoted as s&°.
Similarly, we define the sub-samples s, with n* elements, corresponding to the categories

of A (or A-margins in the cross-classification), and 7, with n® elements, corresponding to
the categories of B (or B-margins in the cross-classification).

The calibration vector x, for element k is defined by x| =(L(6,§)T,(GE)T,(6,fB)T); notice

that a constant calibration variable has been included. Notice further that there are many linear
column dependencies in the resulting design matrix X. If each row would be reduced to, for
instance, the transposed of the Kronecker product, then an equivalent (full-rank) design matrix
would be obtained.

Thereis an initial weight vector d. This vector may be specified later.

The vector of calibration totals, corresponding to the design matrix X, is written

t=(N,N1A,...,N;,Nf,...,NbB,Nl’;B,...,Nl’;B,NQB,...,NZ’;B,...,...,...,NQB,...,N;;B)T. N is the

B
Cc

size of the population, N isthe size of the population in A-category r, N2 isthe size of the

population in B-category ¢, and N,2® is the size of the population in AB-cell rc. We assume
a b b
numerical consistency: N=S$ NA=S$Y NZ, NA=SYN2® (r =1, .., a ad

a

NE = Z N2A® (c=1, ..., b). (If the above-mentioned reduced full-rank design matrix is used,

r=1

then t= (N, NAS NS NSy NZ2, . NZP) T should be used.)

al 1
The distance function G, or the calibration function F, is not specified (yet); Qg is set
appropriately.

More qualitative variables A, B, C, ... may be considered; the generalisation of the present discussion
is straightforward.
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Obviously, since all sample elements k in the same cell rc in the cross-classification by A and B have
the same set of values for the calibration variables, they will be assigned the same g-weight, g,. say.
Hence, there are only ab unknown variables to be cal culated from the system of calibration equations.
On the other hand, the set of calibration equations can be reduced to a set of only ab equations

corresponding to the calibration variables 8/ or to the calibration totals NA® (the right hand sidesin

C
these equations). The resulting linear system of ab equations in ab variables generally has a single
solution. Hence Q. n Qg, if non-empty, generally contains only one point g, which must be the
solution of the reduced set of calibration constraints, independent of the choice of the distance
function. This solution can easily be found: the value of the g-weight g,. follows immediately from

the calibration constraint corresponding to the calibration variable &/ . This constraint can be written
asfollows:

n
dGie = D G = de =N (11.2)
Zl c k;f c c ZE c

K 57
Hence:
NAB
o = ——, 1.3
g Z 0. (1.3)
kOsg
and:
NAB
Wk=dk;°0| foral kOsy®. (111.4)
k
2

It is, of course, assumed that de #0 for al cellsrc, i.e. that each cell contains at least one sample
B

kLG
element (with positive initial weight).

Notice again that these general results, for the given calibration problem, are completely independent
of the choice of the distance function G, or calibration function F, and of the weight vector d. The
reader, however, will be more familiar with special forms of the formulae (111.3) and (111.4). These are
now presented.

Application 1 Initial weightsare all equal to1,i.e. d=1,. Then:

NAB NAB
Oc=—o and  w = n;\cB foral kOsy . (111.5)
rc rc

This result is applicable, for instance, if the sample is exhaustive (a census), if complete post-
stratification by variables A and B is applied, and if non-response (n2® < N/2%) isto be adjusted for.

rc —

Application 2 A simple random sample (SRS) (without replacement, and with fixed size n) is drawn,

so that all elements have sampling weight d, = N . Then:
n
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N AB N AB
- and w=—g foral kOsg . (111.6)
n*__— rc Nec

Notice that the calibrated weights w, are exactly asin Application 1.

Application 3 An epsem (equal probability selection method) is applied to draw aprobabilistic sample,
so that all elements have the same sampling weight d, =d,, say. Then:

N AB N AB
O = and w, =—< foral kOsg . (111.7)
nI‘C dO nrc

Again the same formula for the calibrated weights is obtained. SRS (Application 2) is an important
specia case of epsem sampling. An epsem is also called a self-weighting design. Epsem samples may
be the result of a (very) complex sampling design, such as some two-stage designs, with PPS
(probability proportional to size) sampling of PSUs, and some SRS of SSUs in the selected PSUs (see
Sarndal et al, 1992, p.141 for further details).

Application 4 Suppose a sample is drawn by (fixed size) stratified simple random sampling (STR-
SRS). Let the a priori or sampling strata be indexed by h; §, is the h-th sampling stratum in the

sample. The sampling weights are d, = % for al k 05, . We distinguish two situations:
h

= Post-strata are subsets of (or coincide with) sampling strata: for any rc, sa 0§, for some h.
Then:

MNE g wo= N foral kO8®0 S (111.8)
grc - N AB k — _AB Src S .
h nrc rc

Thisis, once again, the same formula for the calibrated weights w, asfor epsem sampling.

* Post-strata are cutting across sampling strata (the general situation); let n, . be the number of

sampled elementsin the intersection §, n s3> . Then:

—h ¢ fordl kOS50 s (111.9)

Looking carefully at al four applications, we can draw useful conclusions with respect to statistical
practice. We start with the formulation of properties of the sampling design:

Cond1 Thereissome stratification (in the initial phase) of the sampling method.

Cond 2 The sampling design is self-weighting within each sampling stratum.
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And we add a property for the estimation procedure:

Cond 3 Post-stratification is involved in the estimation phase, and each post-stratum is a subset of
some sampling stratum.

If Cond 1 to 3 are satisfied, then the following practical conclusions can be drawn:

Pc 1  The calibrated weights are the same for all sample elementsin a post-stratum; this
common calibrated weight only depends on the size of the population and the size of
the sampl e within the post-stratum.

Pc 2 The initial (sampling) weights do not appear explicitly in the formula for the
calibrated weights.

Pc 3  Hence, ignoring the sampling weights does not affect the calibrated weights.

Pc 4  For purposes of calibration (only), the initial weights can conveniently be set to 1
(or any other constant) without affecting the final calibrated weights.

These results are useful in many practical situations. We have aready mentioned a complex but self-
weighting design in Application 3; there could be one or more (first) stage of stratification in this
sampling design. At Statistics Belgium, for several complex designs, conditions Cond 1 and Cond 2
are (at least approximately) satisfied. If then, in the estimation phase, post-strata can be carefully
chosen, in such away that also Cond 3 is satisfied, then extrapolation turns out to be extremely simple.
Notice that the statistician would not have to choose a calibration function F. No iteration is involved
in the calculation of g-weights and calibrated weights; and therefore general purpose software would
suffice the get the resuilts.

This is probably what makes post-stratification a popular technique in many governmental statistical
agencies. However, the reader should be aware of the fact that these conclusions are only relevant as
far as point estimation of parameters of study variables (totals, means, ...) is concerned. Variance
estimation (for the estimators of the parameters), on the other hand, is a completely different story:
aspects of the sampling design cannot that easily be ignored (or hidden by choosing appropriate post-
strata) for that purpose. Moreover, it is definitely not an optimal strategy to decide to stick to post-
stratification techniques and to ignore the overwhelming existence of very attractive, elegant and
efficient techniques and accompanying software, which give the statistician a huge flexibility,
hopefully resulting into better weighting schemes. | do not say that the era of post-stratification at
Statistics Belgium is finished: statistical practice does not have to be complex in order to be efficient.
But the reader will know that, for many practical reasons, forced for instance by fieldwork or cost
limitations, a sampling plan often reaches some degree of complexity, and the subsequent estimation
procedures may then be abit tricky too.

Moreover, post-stratification as discussed so far almost always suffers from extreme fragmentation of
the sample (and sometimes the population too), a problem that is discussed in the next paragraphs, and
to which some solutions are presented in the next sub-section 111.B.2 and in section 111.C.

In this section we have discussed instances of complete post-stratification. Deville et al (1993) define
complete post-stratification (based on two classifying qualitative variables) as the calibration problem

wherein population cell sizes N/2® are known (and used as benchmark values). Notice that these cell

sizes may be replaced by appropriate estimates, obtained from an external source. (In household
surveys, the Labour Force Survey (LFS) is often used to deliver estimates of population totals or
counts.)
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A well-known problem, as already mentioned, with complete post-stratification is that some or al
post-strata may become extremely small, or even empty, such that the resulting g-weights and
calibrated weights will become unstable, or even undefined. At Statistics Belgium, this problem has
been resolved traditionally by regrouping original post-strata (corresponding to cells in a cross-
classification) into new post-strata, all of which should have a reasonable size in the sample. The
resulting calibration problem is still an instance of a complete post-stratification problem, based on
one or more modified classification variables, however.

In the next section 111.C in this chapter we discuss the popular method of (generalised) raking, where
calibration is no longer on cell counts in a cross-classification of the population, but on marginal
counts, corresponding to the categories of the classifying variables. Raking methods generally solve
the problem of instability of g- and calibrated weights in complete post-stratification. It also works if
there are some empty cells, as long as the marginal categories are non-empty (and not too small).
Raking methods deserve our special attention, since we will have interesting applications, to be
discussed in chapter 5.

Raking, or calibration on known marginal counts, is just one subclass of methods, within the broader
class of incomplete post-stratification methods. In the next sub-section 111.B.2 we discuss incomplete
post-stratification methods that fall, at least in some sense, between complete post-stratification
methods as discussed here before, and raking methods that will be discussed in section I11.C.

11.B.2 I ncompl ete post-stratification

Deville et al (1993) describe incomplete post-stratification as follows: “Any case for which the
auxiliary information is less detailed than a compl ete knowledge of all cell counts can be described as
incomplete post-stratification”. (Thisis not a rigorous definition.) The same authors equivalently use
generalised raking to name this class of calibration problems. However, | prefer to reserve the term
“generalised raking” for that subclass of incomplete post-stratification methods, where calibration is
on margins corresponding to (at least two) classification variables. This terminology, | believe, is
closer to the original terminology used by Deming and Stephan (1940), when they proposed the
classical raking ratio technique. Generalised raking will be discussed separately in the next section
[11.C, for reasons that will become clear over there.

The same notation as in the previous sub-section is used. Suppose that initially a complete post-
stratification problem is considered, but that some sample cell sizes n}® are too small (possibly zero).
Suppose, on the other hand, that (1°) marginal sample sizes n* and n’ are large enough, and (2°)
after collapsing original categories of A and/or collapsing original categories of B the new cell sizes
n? are al large enough. Here A and B denote the modified classification variables, derived
respectively from A and B by collapsing categories for one or both variables. Categories of A are
indexed r'=1,...,a and categoriesof B areindexed ¢ =1,...,b', where a'<a and b'sb. Let N/.* be
the population cell sizes in the new cross-classification. One could consider the new complete post-
stratification problem based on the classification variables A' and B'. The result would be that more
stable g-weights and calibrated weights are obtained, but, formally, nothing new would have been
done.

An interesting and elegant calibration problem (Deville et al, 1993) can be obtained by considering for

each sample element k the new calibration vector x| = (L(B,f\)T ,(BE)T ,(B,f\'B')T), where 8% isthe

Kronecker product &;° =&, 08F, with obvious definition of &, and &F . Notice that the
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calibration vector does involve (explicitly) neither &, nor &7 , but the original 8, and 8. This
means that calibration is on original marginal counts N,A and NCB and, at the same time, on new cell
counts N,°0> .

Now, sample elements in a new cell r'c do not necessarily have the same set of values for the
calibration variables, and therefore may have different g-weights. This complex dependence of g-
weights on calibration variables through the calibration function F implies that it is not possible
anymore to reduce the system of calibration variables to a simple set of linear equations that can be
solved algebraically. Thus the system has to be solved iteratively, and the g-weights will generally
depend on the choice of the distance function or calibration function.

To make things perfectly clear, we illustrate some aspects by means of a small example. Let’s start

with a complete post-stratification problem, based on a2 x 3 classification, schematically represented
(without calibration totals) as follows:

Table3.1 A two-dimensional contingency table: complete post-stratification

B-category
Sample
A-category 1 2 3 margins
(1,1,01,00,1,0,0,000 | (1100100,10000) | (11000,100,21,0,0,)
1 15 0 10 25
’ (1,1,0,10,00,0,0,1,00) | (110010000010 | (1,1000,100,0,0,0,1) 45
25 18 2
Sample 40 18 12 70
margins

Each cell contains the calibration vector for each of the sample elements in that cell, and the sample
cell count. Post-stratification is not possible from this table, since one cell sizeis zero (and another one
is small). However, collapsing the 2™ and 3™ column, a new incomplete post-stratification problem is
obtained, with the following schematic representation:

Table 3.2 Atwo-dimensional contingency table: incomplete post-stratification (1)

B-category
1 | 2 | 3
B -category
Sample
A-category 1 2 margins
(1,1,0,1,0,0,1,0,0,0) (1,1,0,0,1,0,0,1,00) (1,1,0,0,0,1,0,0,1,0)
1 15 10 25
5 (1,1,0,1,00,0,0,1,0) (1,1,00,1,00,0,0,1) (11,0,0,0,1,000,1) 45
25 20
Sample 40 18 12 70
margins

Notice that the margina counts, 18 and 12, have not been collapsed. Thisis essentialy why the new
calibration problem is not a complete post-stratification problem anymore.

- 41 —



If we compare the corresponding calibration design matrices X and X', then it is noticed that 4
columns of X, corresponding to the calibration variables 8.5, 8}5, &, and &;, are transformed into 2
columns of X', corresponding to the calibration variables 85 and &5 as follows:

AB AB _ XAB
%1z * O3 2 (111.10)
O + 855 = 8
Strictly speaking we should also include the relationships &,y = &/ and d5° = &5 , but these do not
change any column in the original matrix X. From a practical point of view, the remarks in this
paragraph are useful, as we will demonstrate numerically in chapter 5, for two reasons: (1°) it indicates
how the new design matrix X' can be constructed from X in a straightforward way, by some simple
summations, and (2°) it opens a door to alternative modifications of the original complete post-
stratification problem, which are practically treated in a very similar way, as illustrated in the next

paragraphs.

Indeed, consider again the above numerical example. If one would decide that (only) 2 elementsin a
cell is enough for calibration and estimation, then only the cells containing 0 and 10 elements could be
collapsed. l.e. 8/ = &/F , 8fy + 812 = &y and &5° = &he (c=C =1,...,3), or, schematically:

Table 3.3 Atwo-dimensional contingency table: incomplete post-stratification (2)

B-category
1 | 2 | 3
B -category
Sample
A-category 1 2 margins
(1,1,0,1,0,0,1,0,0,0,0) (1,1,0,0,1,0,0,1,0,0,0) (1,1,0,0,0,1,0,0,1,0,0)
1 15 10 25
(1,1,0,1,0,0,0,0,1,0,0) (1,1,0,0,1,0,0,0,0,1,0) (1,1,0,0,0,1,00,0,0,1)
2 25 18 2 45
Sample 40 18 12 70
margins

The latter method allows collapsing cells in a more refined way: an individual cell can be collapsed
with any other individual cell. The previous method merely allows collapsing each cell in a column
(row) with each corresponding cell in any other column (row). Finally, it may be noticed that cells that
are collapsed do not necessarily have to be “neighbouring” cells, although this will be a more
convenient approach if the classification variables are ordinal.
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"n.c THE RAKING RATIO TECHNIQUE FOR CROSS-TABULATED DATA

1.c.1 Introduction: equal g-weights

In generalised calibration the g-weights are g, = F(x;A) (k=1...,n), or g(A) = F(XA). Hence, if k

and k' are sample elements with the same auxiliary vector x, =X,., then their g-weights are equal to
each other: g, = g,..

Let the calibration model depend on qualitative calibration variables A, B, ... only. Then within each
cell in across-classification of the sample s by the variables A, B, ..., al sample elements will have the
same auxiliary vector, and therefore the same g-weight. Let ¢ be indexing the cells in the cross-
tabulation (c=1,...,C if thereare C cells), and let g, be the common g-weight for all sample elements

in cell c; let s° be the sub-sample of elements in cell c. Then the j-th calibration constraint can be
rewritten as

ZWkaj = degkxkj = ngij = ZQCZX"J' =t;.
(= (s (= T KS

Define Z)’(kj =7, i.e. the sum of expanded values of the j-th calibration variable in cell ¢, whichin
ks

fact is the weighted sum of the values of the j-th calibration variable in cell c, the weightsin this sum

being theinitial (sampling) weights. This shows that the calibration constraints can be written in terms

of weighted totals over sample elements in the cells of a cross-tabulation; the individual values and

initial individual weights have collapsed into these sums, i.e. Z 0. =t;.

A similar argument is used to show that the objective function also can be written in terms of cell
totals:

d'G(g) = z dG(gy) = z G(gc)zdk -

The weights in this sum are the totals of theinitial weights within the cells, that is: de =d;.
kOs

Hence the expanded data matrix (X|d) can be collapsed into a matrix of weighted totals, the collapsed
data matrix (Z|d" ), where the (C x m)-matrix Z has element . in the c-th row and j-th column, and
the (Cx1)-vector d* has c-th element d; . Also § =(§,,....dc), and Qg follows immediately from
Qg e9. Qp =[LU]" if Q5 =[L,U]". Then the calibration problem {mind"G(g); X 'g=t,g @ 4}
can be reformulated equivalently as

{mind*TG(‘g);ZT‘gzt,‘gD B}. (111.12)

An equivalent formulation of a general calibration model {mindTG(g);f(Tg=t,gm2 B} is

{min dTG(g); X'Dg=t,g @ B}. The latter formulation is useful in relation to our SPSS software
modules. Indeed, as we will explain in full detail in chapter 1V, the main input for the calibration
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module g-CALIB consists of the data matrix (X|d) and the vector t, in case of individual data. In

order to be able to use our software also for solving calibration models for grouped data (examples are
collapsed individual data as explained, or cross-classified data), i.e. models of the form (111.11), we
rewrite this model asfollows:

{mind"TG(8);Z'D'g=1,§ 00, (111.12)

where Z=D""Z ,or Z=D"Z, with D* = diag(d") . It follows then that for a grouped data problem

the data matrix (Z|d") and the vector t (the same as for individual datal) are the primary input for our
software g-CALIB.

We now illustrate the usefulness of the above general idea, that of collapsing individual data, in two
situations that are of great interest in practice.

1.C.2 Collapsing the data to reduce the size of the calibration problem

The dimension of the data matrix (X|d), i.e. nrowsand m+ 1 columns, for individual data, essentially

determines the size of a calibration problem. It would be useful if this data matrix could be reduced.
The above idea of collapsing the data provides an efficient solution for that purpose. The above

reasoning fully explains how individual data (X|d) have to be transformed into grouped data (Z|d") .
Briefly, the procedureis asfollows:

» Aggregate rows in X by qualitative variables A, B, ..., using weights d. The result isZ , as
defined above.

»  Aggregate rows (elements) in d by qualitative variables A, B, .... Theresult is d*, as defined
above.

= Compute Z=D""'Z ,with D* =diag(d").

The resulting datamatrix (Z|d*) hassize C x (m+1), wherein Cisthe number of (non-empty) cellsin

a cross-classification by the qualitative variables A, B, .... The reduction factor is roughly 1 over the
average number of individual data points in a cell. Notice that the number of columns in the data
matrix has not changed, i.e. aggregation is column by column.

After collapsing individual data and calculating g-weights and calibrated weights, it will, in most
applications, be necessary to turn back to the individual data. Thisis true for calibration estimation of

totals of survey variables, as well as for estimation of variances of estimators of totals, within the
generalised calibration framework (see section 111.G).

Notice that elementsin Z are wei ghted cell averages:

) %xm k%tdk)(kj
24 2%

l
N

N
1

(111.13)
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Aswe shall seein section 111.D, collapsing data has a lot in common with the clustering technique to
impose equal g-weightsin clusters.

11.C.3 Classical raking ratio in a contingency table

A 2-dimensional contingency table is a 2-way classification of (observed or expected) frequencies.
The classification variables are qualitative. In survey statistics, one may want to adjust the frequencies
in the table in order to meet some restrictions. The classical raking ratio techniqueis used to adjust the
cell frequencies such that the margins in the table of adjusted frequencies are equal to fixed values. A
common sSituation is where the observed freguencies are obtained from a sample, and the fixed
margins are the margina frequencies of the classification variables in the (finite) population from
which the sample has been drawn. The general form of a contingency table, extended with marginal
population frequenciesis asin table 3.4.

Table 3.4 Atwo-dimensional contingency table, extended with population margins

B-category
A-category o c .o Sample  Population
margins margins
r cee nrc eee nr . N rA
Sample margins N, n
Population margins NEB N

Our problem hereisto show that the raking ratio problem for a contingency table perfectly fitsinto the
generalised calibration framework, and to outline how the data are to be transformed, in order to be
able to solve the raking ratio problem by means of our software g-CALIB-S. For a discussion of the
raking ratio method, we refer to Deville et al (1993). We start with a small hypothetical example.
Consider the data in table 3.5, showing the joint distribution of variables A and B in asample of sizen
= 22, and the marginal distribution of variables A and B in a population of size N = 100. Variable A
has a = 2 categories, variable B has b = 3 categories; the number of cellsisC=ax b=6.

Table 3.5 An example of a 2 x 3 contingency table, extended with population margins

B-categories
A-categories 1 2 3 Sample  Population
margins margins
1 4 5 3 12 50
2 5 2 3 10 50
Sample margins 9 7 6 22
Population margins 30 40 30 100

We have implicitly assumed that the sample data in table 3.5 are obtained from individua data, as
given in the first three columns in table 3.6. Notice that we assume that all individuals have the same
weight 1 (column 3).
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Table3.6 Original individual data, with corresponding design matrix X, and
calibration totals t

Original data Design matrix X
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A model for calibration on margins of qualitative variables A and B can be written 1 + A + B (section
[11.A.1). A design matrix for this model is asin the last six columns of table 3.6; the headers of these
columns are appropriate names for the six calibration variables. The last row in the table contains the
population margins, i.e. the calibration totals t; ; the next to last row contains the initial weighted

sample totals of the calibration variables. Following the collapsing procedure as outlined before, we
obtain the collapsed data matrix (Z|d+) as in the first 7 columns of table 3.7, and the grouped data

matrix (Z|d*) asinthefirstand 6 last columns of table 3.7.

Notice that in the constructed individua data, each calibration variable X; is constant within any cell c,
from which we derive that

z; =%, forany kOs*,andany j=1,...,m (111.14)
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Table3.7 Collapsed data matrix (Z|d") and grouped data matrix (Z|d") , obtained by
transformation of individual data (X|d)

d* Collapsed design matrix Z Grouped design matrix Z
X0 A1 A2 Bl B2 B3| X0 Al A2 Bl B2 B3
4 4 4 0 4 0 0 1 1 0 1 0 0
5 5 5 0 0 5 0 1 1 0 0 1 0
3 3 3 0 0 0 3 1 1 0 0 0 1
5 5 0 5 5 0 0 1 0 1 1 0 0
2 2 0 2 0 2 0 1 0 1 0 1 0
3 3 0 3 0 0 3 1 0 1 0 0 1
C
Z d;'j 22 12 10 9 7 6
c=1
t 100 50 50 30 40 30

Obviously, the calibration results from individual data and from grouped data in this example are
numerically the same, given that in both calibration problems the same distance or calibration
functions are used. For the raking ratio method, the calibration function is the exponentia function.
The fact that our algorithm converges to the same solution as the classical alternating method, often
called iterative proportional fitting, is not shown theoretically in this text.

The above small example demonstrates how, directly from a contingency table, the data matrix

(Z|d+) has to be constructed. SPSS modules are discussed later; rather than using the general
collapsing procedure, we use (111.14) to implement a transformation. The same technique can be used
if the cells in a cross-classification do not contain observed frequencies, but general real values. We

illustrate this in section V.F. Extension of the above procedures from 2 qualitative variables to 3 or
more is straightforward.
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".D IMPOSING EQUALITY OF G-WEIGHTS IN CLUSTERS

In section 111.C, we have discussed how the survey data can be collapsed over groups of elementswith
the same calibration vector. This technique can be used at any time and may be useful to reduce the
length of the survey data file (i.e. the number of rows in the design matrix), and therefore the time
needed to perform the computations. Thus, collapsing survey data has there been introduced first and
foremost for practical purposes. Nevertheless, we discussed a useful practical application of
collapsing: adjusting cross-classified data, wherein individual observations are not available, but
survey data are only available at an aggregated level. The technique isillustrated in section V.F, using
aggregated data on labour volume and labour compensation.

When survey data are collapsed, values of calibration variables are not changed: several elementswith
the same calibration vector are replaced with a single new (higher level) element with the same
calibration vector. The new “element”, however, gets an initial weight that is the sum of the initia
weights of the original elements that it “represents”.

In this section we discuss a technique of aggregating data, which does have something in common
with collapsing data, but itsrationale is rather of adifferent nature. Indeed, we now want to impose the
same g-weights for elements with different calibration vectors. From our statement in the first
paragraph of section I11.C.1, it follows that, if an ordinary calibration problem is set up, the origina
survey data must be transformed, because otherwise one could only be lucky to obtain g-weights that
satisfy some pre-specified equality constraints. We now show this need for a transformation of the
survey data, starting from an extended calibration problem; the new calibration problem can indeed be
formulated in terms of the original data, but adding some additional constraints, as follows:

{mind"G(g); X"g=t,g @ g,equaity restrictionson g} . (111.15)

We will show now that this new calibration problem can be transformed into an ordinary problem of
the form {mianG(f); Yt =sf ® B},Wherein b, f, Y, sand © areto be specified, so that finally

our software can still be used to solve the problem. In order to formalise this new modified calibration
problem, we first have to introduce some new concepts.

A subset of elements in the sample s, for which the g-weights have to be equal, not because of equal
calibration vectors, but since these equality constraints are imposed by the modeller, is called a cluster.
In practice a cluster is determined by one or more qualitative variables. Such a variable cannot be a
calibration variable (or a variable from which a set of calibration variables is derived), but is actually
one of the sampling and/or survey variables, which naturally follows from the survey context. A
typical example of acluster is, in case of persons as elements in the sample s, the household to which
the element belongs. In business surveys, a cluster could be an enterprise as a set of different local
units (the elementsin s). In labour cost statistics, a cluster could be an enterprise or alocal unit asthe
set of employees (the elements of s) which are employed in that enterprise or local unit. Since the
technigue discussed in this section is built up from the idea of clusters, it will from now on be called
the clustering technique, or, simply, clustering. Notice that a cluster in this calibration context will
often — but not necessarily always! — be nothing more (or less) than a cluster in the sampling design, if
some cluster sampling technique is applied.

Suppose that the sample s contains n elements, and that these elements are members of L clusters (L <

L
n). Let 5 bethel-thcluster,1 =1, ..., L; noticethat s= Us . Wethen construct an x L matrix C, the
=1
cluster-membership matrix, where each row corresponds to an element of the sample s and each
column corresponds the a cluster, and whose entries ¢, (k =1,...,n;| =1,...,L) are defined asfollows:
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¢, =1 if kOs
=0 if kOs.

Such a matrix can easily be constructed with our software; see later. Nieuwenbroek (1997) has
introduced exactly the same matrix (but iscalling it L); if L = n, then C is the identity matrix of order
n. It is easy to see that the matrix product C'd =d* is a vector of length L, whose I-th element is the
sum of the initial weights for elements in the I-th cluster. Given that the g-weights are constant within
al clugters, let g, =g, for al elements ks and for dl clusters 5; i.e. g, is the common g-

weight for elementsin the|-th cluster. Let g be the L-vector of g-weights g,,, . The objective function

in (111.15) can now be rewritten: d"G(g) =d' CG(g) :(CTd)TG(@') =d""G(g) . For convenience we
assume that the rows of the design matrix X, of the clustering matrix C and of the initial weight vector
d are ordered according to the clusters, i.e. sample elements within the same cluster have succeeding
rows in these matrices and vector. It then follows that the calibration constraints X'g=t can be

written equivalently as (CTX)Tg':t, or H'g=t where H=C"X . Notice (1°) that the vector of

calibration totals has not been changed, and (2°) that H is the (L x m)-matrix with elements
h = dexkj = Z)‘(kj (1=1..,L;j=1..,m). Finaly, let Qg be appropriately modified — eg.
kls Kl's

ﬁB = [O,+oo)L if originally it were [0,+00)" — then the calibration problem can be written equivalently
as

{mind*TG('g);HT'gzt,gDQB}. (111.16)

Thus, this transformed calibration problem is formally an ordinary calibration problem, and it will
therefore be possible to solve it with our software, once the data are transformed appropriately.

The result is basically the same as the genera result in section 111.C.1, but our derivation in this
section followed a dlightly different path, since clusters are sets of elements with generaly different
calibration vectors, whereas cells in section I11.C.1 are sets of elements with the same calibration
vector. Moreover, cells are defined by means of qualitative calibration variables, while clusters are
defined by means of qualitative cluster variables, which are not treated as calibration variables.

| intend to extend our software, such that a cluster variable is taken automatically into account. This
should not be difficult at all: the survey datafile (see section 1V.B.3) should include a cluster variable,
and aggregation by this cluster variable is then a straightforward task in SPSS. Aslong as the software
cannot deal with a cluster variable, one should transform the data him/herself. For that reason, the
following reformulation of (111.16) is more appropriate, as it indicates clearly how the data are to be
prepared if clustering has to be taken into account:

{mind*G(g);H'D*g=1,5 0Q4}, (111.17)
where, as in section I11.C.1, at least formally, H is defined as H=D*"H, or H=D"A, with

D* =diag(d"). Notice that the entries of the matrix H are weighted averages of the values of
calibration variables within clusters, i.e.for =1, ..., Landj =1, ..., m:

— 49 —



h =2 . (111.18)

Finally, implementation will be rather straightforward, since, as mentioned already, the cluster-
membership matrix C can easily be constructed (using the macros to be discussed in section IV.B.6),

and  because of the following relationships D' =C'DC=diag(C'd)  and

H=D"'C"X=D""'C"DX, which show how to find the new data structures for the clustered
problem from the original data structures, using the clustering transformation C.
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LE  SIMULTANEOUS CALIBRATION ON TWO LEVELS OF AUXILIARY INFORMATION
[11.E.1 Thegeneral problem

This section deals with generalised calibration for the following more complex survey data instance:

(i) Ultimate sampling elements k, in the element sample s of size n, are clustered into L ultimate

L
clusters s,y with respective sizes n,, where s=Us(|) .
=1
(ii) Element-level auxiliary information is stored in an element-level calibration design matrix X,
with dimension nxm, andina(nx21)-vector t of calibration totals.

(ili)  Element-level sampling (or initial) weights are stored in a (n x 1)-vector d, with elements d, .
Let D =diag(d), and X =DX the expanded design matrix.

(iv) Cluster-level auxiliary information is stored in a cluster-level calibration design matrix Z,
withdimension L x p, andina(L x1)-vector sof calibration totals.

(v) Cluster-level sampling (or initial) weights are stored in a (L x1)-vector d, with elements
dy) - Let D=diag(d),and Z =DZ the expanded design matrix.

For many surveys, in practice, we can moreover assume that sampling weights for elements within a
cluster are constant and equal to the corresponding cluster-level sampling weight:

(vi) d,=d;ifkOs,,I=1,...,Landk=1, ..., n.
So we will work under this assumption throughoui.

As in the previous section, let C be the nx L cluster-membership matrix, and let d* = C'd bethe
(L x21)-vector of sums of element-level sampling weights within clusters. Under assumption (vi), we

have d* =C'd =DC'1,, i.e. thel-th element of d* is nd, .

An example of the above situation is often met in household surveys: clusters are households, and are
selected according to possibly acomplex sampling design. Within households (or clusters), individuals
(the ultimate sampling elements) are all selected for participating in the survey. Then it isindeed well
known that (vi) is satisfied. Auxiliary information is usualy available at household as well as at
individual level (and thisinformation is often already used at the sampling design stage). For instance,
the total numbers of individuals and households living in large geographical areas are known, and for
each household, and therefore also for each individual, it is known in which areaiit lives.

To tackle such a complex problem, we can proceed in several ways, depending on what kind of
calibrated weights we want to obtain, and which auxiliary data are thought to be of interest for
calibration. The ultimate aim of this section is to discuss how element-level and cluster-level data can
be integrated into a single calibration problem. In each of the next sub-sections we will also indicate
what are the consequences of the applied calibration technique on estimation of totals of element- as
well as cluster-level study variables.
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I1.E.2 Element-level calibration, ignoring cluster-level auxiliary information

Thisisan ‘ordinary’ generalised calibration problem, formulated as

{mind"G(g); X"g=t,g@ 4}, (111.19)

where X =DX . Solving this problem, we get g-weights g, = F(x[)\), where A is an optima m-

vector of Lagrange multipliers. These g-weights vary across elements, and need not be the same for
elements within the same cluster. For estimation of totals of element-level study variablesy, we apply
the following formula:

L
£, =3 degeyic =Y doy Y F(xiA )i (111.20)
kOs 1=1 Kl's

Estimation of the total of a cluster-level study variable y is not immediately obvious. Consider for
instance the variable “household size” (i.e. number of individuals in a household, if clusters are
households). An ad hoc strategy can be applied: artificially transform the cluster characteristic y into
an element characteristic, by assigning the value y,;, /n, to element kif k Os; . Then:

y ) F(XD\)
=Y dg— 2= dy E——y . (111.21)
kB n  f= n

This is equivalent to constructing a cluster-level g-weight from the estimated element-level g-weights

Z F(xcA)
as an arithmetic average: g, = "E‘Sn— . (We€'ll see later that this technique is applied currently in
|

the Labour Force Survey at Statistics Belgium (section V.B.3).) If the cluster variable is one of the
variables z;, then we get an estimate fzj which is not necessarily equal to thefixedtotal s; (j =1, ...,

p)-

I.E.3 Cluster-level calibration, ignoring element-level auxiliary information
Thistooisan ‘ordinary’ generalised calibration problem, formulated as

{mind"G(9):2"g=s3 @ .}, (111.22)
where Z =DZ . Solving this problem, we get g-weights g, = F(zy), where y is an optimal p-

vector of Lagrange multipliers. These g-weights vary across clusters. For estimation of totals of study
variablesy, we apply the following formul ae:

. if yisacluster-level variable:
R L L
t, = Zdu)gu))ﬁ = Zd(|)F(Z|TV)Y| ) (111.23)
= f=1
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. if yisan element-level variable:

=5 dan=Y 5 dgy= Zd(l)F(ley)[ > ykJ . (111.24)
kis =1

=1 K's), kL)
Notice that the element-level caibration variables x; (j =1,...,m) can be considered as element-level

L
study varicbles, but that £, = dg.x =zF(z,Ty) > dixg #t;, generally, where t; is the
A3 f=1 K5
initially fixed total for that variable x; .

[11.E.4 Element-level calibration, imposing constant element-weights within clusters,

but still ignoring other cluster-level auxiliary information

One of the advantages of formula (111.24), as opposed to formula (111.20), for estimation of totals of
element-level study variables, is that elements in the same cluster have the same g-weights, which may
be expected to result into more stability on the element-level, and to more stable estimates of totals of
element-level variables. This stability is a consequence of calibration on cluster-level auxiliary
information only. Stability can also be achieved by clustering (section 111.D), when calibration is on
element-level auxiliary information only. We know from section 111.D that the restricted calibration
problem, using element-level auxiliary information only, but imposing equal g-weights within clusters,
can be formulated as follows:

{mind*"G(g); ATg=1,§ 004}, (111.25)

where H=D"A and A =D" 'CTDX (section I11.D). Notice that the Ij-th entry of the latter matrix is
aweighted average of x-values (formula (111.18) in section 111.D). Still working under assumption (vi),

2%

Usg

we get a simple unweighted arithmetic average: ﬁj :kn—) =Xyy;- Therefore, the g-weights are
|

g(,)=F(7(T|))\'), where A' is a new optimal mvector of Lagrange multipliers, and

X(Tl )= ()‘(U)l,... , )_((I)m) . Hence the g-weights indeed vary across clusters, but not across elements within
clusters. For estimation of totals of study variablesy, we apply:

. if yisacluster-level variable:
. L L T
f, = doygon = Zd(,)F(7(|))\')y| , (111.26)
1=1 1=1
. if yisan element-level variable:

L L
fy = chdkgkYk =Zl zdkg(l)yk :;d(I)F(XJ)A')Lé Yk]- (111.27)
= = I

K's)
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Notice the similarity between (111.26) and (111.40), and between (111.27) and (111.24). Unfortunately,
however, 'fzJ s (j=1,...,L).

I11.E.5 I ntegrated element-cluster-level calibration

The disadvantage of the approaches in the previous sub-sections 111.E.2-4 is that if calibration is on
element-level auxiliary information only, then results are not necessarily numerically consistent at the
cluster-level, while if calibration is on cluster-level auxiliary information only, then results are not
necessarily numerically consistent at the element-level. It is however possible to achieve numerical
consistency at the two levels simultaneoudly.

Two-level numerical consistency can only be realised if the g-weights are constant within clusters.
This implies that we have to combine the technique for calibration on cluster-level auxiliary
information, as outlined in section I11.E.3, with the clustering technique for calibration on element-
level auxiliary information, as outlined in section I11.E.4. Combination of the two sets of calibration

constraints is straightforward: we have to consider the system with sub-systems Z'g=s and
_ _ - = S
H'g=t. Thiswecanwriteas V' =u, with V :(Z|H) and u =(J . Now, from section I11.E.3, we

have Z=DZ, and therefore we aso define H=D"H, such tha H=DH and V =DV, with

V =(Z|H). Notice that, from section I1.E.4, H=D"A =D'D*A =D 'D'D*'C'DX =D'C'DX,

i.e. H is simply the (L xm)-matrix with entries h; = Zxkj =nX,;. The system of calibration
ks,

equations can then be written equivaently as VDG =u, which makes the weights explicit, and

which also indicates that the objective function to be used is d"G(g) (asin section 111.E.3, but not as

in section I11.E.4). The latter in fact means that the integrated element-cluster-level approach is
essentially a cluster-level calibration, with individual calibration variables being summed within
clusters. Thus, the final integrated element-cluster-level calibration problemis:

{mind"G(q); VTg=u,g@ }. (111.28)
Alternative formulations are:
o (2T (S) .~
{mln dTG(g);[HTjg:(J,g DQB}, (111.29)
and:
{min d"G(3) (ﬁilﬁg':@, gmﬁB}. (111.30)

The latter indicates clearly how the input files for our calibration software module will have to be
constructed in practical applications. Notice that, if the constant variable x = 1 were one of the
element-level calibration variables, then this variable would become a cluster-level calibration variable
h, with values equal to the cluster sizes n, .



The resulting g-weights can now be written as:

gy = F(z'y?+nxa°)
=F(z'y"+h/A") (111.32)

where y?and A" are new vectors of Lagrange multipliers, with length p and m, respectively. For
estimation of totals of study variablesy, we have:

. if yisacluster-level variable:
~ - - T T
t, = zdu)gu))ﬁ = zd(|)F(Z| yo+h, Am))ﬁ : (11.32)
=1 =1
. if yisan element-level variable:

L

L
£, = degkyk = Z > Al Vi = Zd(l)F(z,TyD +h|TA“ﬂ)£ > yk] : (111.33)
Us ZIES(U =1 kEEU)

The reader will compare these formulas with (111.26) and (111.23), and with (111.27) and (111.24),
respectively. Remember that we now have complete numerical consistency: 'fzJ =s; (=1,...,L)and

L, =t (=1,...,m).

I11.E.6 Discussion

In the previous sub-section we have described a technique for dealing with two levels of auxiliary
information. The proposed method is a simultaneous calibration technique that is essentially a cluster-
level calibration method. In this study we will present —and briefly discuss — some preliminary results,
from application of this technique to the Time Use Survey (1999) at Statistics Belgium (section
V.D.2). Other surveys will be considered later for application of this technique.

The technique of simultaneous calibration at several levels of auxiliary is not new, as the literature
indicates. Moreover, in the literature on calibration, several aternative methods for dealing with
auxiliary information that is available at two or more levels are presented. See for instance Sautory et
al (1999), Mohadjer (1999), Hidiroglou and Sarndal (1998), Dupont (1995), Kalton and Brick (1995),
Lemaitre and Dufour (1987), among others. Notice that these studies often treat the problem in the
context of multi-phase sampling, which may lead to dightly different types of formulas for, for
instance, the g-weights. In multi-phase sampling, it may seem more natural to calibrate step by step,
each step corresponding to one of the phases in the sampling procedure and resulting into auxiliary
information related to each phase, and sometimes be built up step by step. Cluster sampling is a
particular case of two-phase sampling, as for instance Sarndal et al (1992, p.344) point out.

Those complex calibration methods are worth to be studied further at Statistics Belgium, both at a

theoretical level for thorough understanding and at a more practical level, focussing on
implementation of the techniques in different multi-phase or multi-stage sample surveys. Time should
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be spent on comparison of severa alternatives. The case of the LFS would be a useful starting point
for an in-depth study, eventually resulting in a stable, but flexible, weighting scheme, that incorporates
auxiliary information at two (or more?) levels simultaneously and therefore produces numerical
consistency at several levels.

This discussion has drawn our attention to a*“small” problem, related to the clusters’ sampling weights

(or initial weights) d. If cluster-level auxiliary information is derived from element-level data, then a
natural choice seems to be the sum of the element-level sampling weights. This implies an additional
weighting factor in the objective function: larger households get a higher weight. If, on the other hand,
cluster-level auxiliary information is directly observed for clusters as awhole, then it seems natural to
use the clusters’ sampling weights, which implies that the size of the household is completely ignored.
It would be interesting to study the effect of variability in cluster sizes on the estimated cluster-level g-
weights, and the resulting point and variance estimates for totals of study variables.

To close this section, we summarise the results in the table on the next page. It may be noticed that
application of the collapsing technique, as discussed in section 111.C.2 could be considered in each of
the four situations summarised in the table. Collapsing is useful for reduction of the size of the
calibration problem, but otherwise doesn’'t add anything new. Collapsing is particularly useful for
calibration on qualitative variables, when it may be expected that a significant number of units
(elements or clusters) have the same calibration vector, such that a significant reduction in the size of
the problem can be realised.
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Table 3.8 Overview of calibration models, if two levels of auxiliary information are available

A priori
éejtvgcg;%l > Auxiliary information Numerical | Numerica
Level of auxiliary | Specid (B : basic; %on? fte:cy %onfste;\cy
information used | technique D : derived) Calibration constraints g-Weights X T 7 =S¢
Element - X,d,t (B) XTg=X"Dg =t g = F(x{A) Yes -
gk:g(') o+ T~ _OTR+S — e (oT 3
Element H,d" t D H'g=H'D'g=t O = F(XHA Yes -
Clustering (©) 9 9 Q) ( ) )
Cluster - Z,d,s (B) Z'g=2"Dg=s 9o =F(z'y) - Yes
O =90 T val T
Element + Z')~(s) (B) ~ [Z" )z~ (s _ _
Cluster Clustering HTJ’d’(t) (D) o T 9= HT Dg= t g(l) - F(ZP—VD-’_nIXZI—)Am) Yes Yes
Simultaneous
Where: =(dy)
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"n.F ESTIMATING POPULATION TOTALS OF SURVEY VARIABLES: DEALING WITH
MISSING VALUES

The basic formulafor the calibration estimator of thetotal t, = Z y, of asurvey variableyis
kU
fyzzwkyk:WTy, (111.34)
ks

where W=(W1,...,Wn)T is the vector of calibrated weights and y=(y1,...,yn)T is the vector of y-

values for the sample elements. So far we have assumed that the design matrix X is complete, and
now, in order to have a workable formula (111.34), we must furthermore assume that the data matrix

(Xly) is complete, by which we mean that for all n sample elements values are available for all

auxiliary x-variables and for the survey variable y. Obviously, the sample s might be the respondent
sample. Thus we have covered so far the situation in which there is unit non-response only. Notice
that the calibration technique is assumed to correct appropriately for unit non-response.

In practice, the data matrix (X|y) (for the respondent sample) often isincomplete (with the restriction,

of course, that arow, or case, is never missing completely): we then talk about item non-response (in
addition to unit non-response). One solution to the problem is to complete first the data matrix, and
next to proceed as outlined so far. Filling in the gaps in the data matrix is called imputation, and the
reader will know that there exists a large collection of methods for imputation, ranging from the
simplest mean value imputation to the most sophisticated form of (model-based) regression
imputation, or from simple ad hoc methods to ingenious statistical methods.

We do not deal with imputation methods in this text for two reasons. Firstly, calibration theory
basically ignores whether x-values are imputed or observed (or obtained from registers): among other
things, the calculation of variances for calibration estimators needs some modification, taking into
account the uncertainty in imputed x-values. Secondly, imputation should be another topic for
investigation at the most general level at Statistics Belgium. Only then imputation and calibration
should be combined to further improve in a synergistic way our survey estimates.

Consequently the discussion in the present section is very pragmatic and merely aims to provide
practical methods to deal with incomplete data matrices, e.g. caused by item non-response.

We distinguish three situations of incompleteness. Table 3.9 presents these schematically; notice the
distinction between m complete cases and n — mincompl ete cases.
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Table 3.9 Types of incomplete data matrices

Situation 1 Situation 2 Situation 3
Case X y X y X y
l X X X X X X X X X X X X X X X X X X
k X X X X X X X X X X X X X X X X X X
m X X X X X X X X X X X
m+1 ? 2 X ) 2
n X X X X X ? X X ? x ? X X X ? X X ?

The solution in each of these three situations is based on the procedures as discussed in the previous
sections, occasionally followed by an additional correction. This correction can be such that for at
least one of the calibration variables the calibration constraint is still satisfied.

STUATION1 Complete X and incompletey.

Let s, bethe sub-sample of m complete cases. Then

t, = Z WY = NF;, = > Wiy, (111.35)
& s

is a ratio

where N = ZW,( is the calibration estimator of the population size N, VSC z
S Wi

estimator for the mean of the survey variable based on the sample s, of complete cases, and

A~

N
2 Vi
KR,
calibration variables, then N = N. Then the estimator is sometimes called the expanded sample mean
(Séarndal et al, 1992, p.258) (strictly speaking only if the weights would be the sampling weights).

Alternatively, one can use any other calibration variable x; , say, and the estimator would then be:

Z Wi X, Z Wic¥k

o _ (=
t, = WY = :
Zwkka

Z WicXyg, k35,

KR
This is aratio estimator for the total t,, based on the calibration variable X;, (Sérndal et al, 1992,
p.180) (strictly speaking only if the weights would be the sampling weights).

w, is an adjusted calibration weight. If the constant variable x = 1 is among the

(111.36)
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It is possible to extend these estimators so that more than one calibration variable is taken into account
to make the adjustment. If these calibration variables are the indicator variables corresponding to the
categories of some qualitative variable(s), than a regression type estimator as (7.6.1) in Sérndal et al
(1992) is obtained.

STUATION 2 Incomplete X and completey.

Here, calibration weights are calculated from the complete cases sample s., and calibration weights
are therefore available for the elements in this sample only. Henceforth, only the observed y-values for
elementsin s, can be used:

t, = kgscwkyk.

l.e. the sample s is simple replaced by the sample s.. A drawback of this solution is that some

observed values for the survey variable are not used. This can, strictly speaking, only be accepted if
non-response is ignorable, i.e. the value of y does not depend on whether the x-values are observed or
not. Otherwise some bias can be introduced.

STUATION 3 Incomplete X and incompletey.

Thisissimilar to situation 2.
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.G VARIANCE ESTIMATION

It iswell known that if the linear calibration method is used, then the calibration estimator of totals of
study variables y is a GREG (generalised regression) estimator. The formula for the asymptotic
variance of the GREG estimator is not complicated, and an estimate is easily computed with the
following formula (see Deville and Sérndal, 1992):

v(t,) = é%[l_nk]-‘}(wkek)(WIQ)v (111.37)

ki

where 1, (kOs) are the first order inclusion probabilities, 1, (k,l Os) are the second-order
inclusion probabilities, w, (k s) are the calibrated weights, and g, (k JsS) are residuals, to be

calculated from a sample-based weighted linear regression of y on the calibration variables. In matrix
notation, thisiswritten as:

V(f,) =e"wawe, (111.38)

where A =(1—Mj, W =diag(w,) and e=(e,,....e,) . The residua vector e can be computed
T

from the survey data as follows:
e=y-Xb =y -X(X"DX) XDy, (111.39)

where b = (XTDX)_XTDy is an estimator for the vector of regression coefficients in the weighted
linear regression of y on the calibration variables. Notice again the use of g-inverses.

In calibration methodology, it is also proved (Deville and Sarndal, 1992) that any calibration estimator
fy is asymptotically equivalent with the GREG-estimator. Therefore, the variance of any calibration

estimator fy can be estimated using the above formulae for estimating the variance of the GREG-
estimator, at least in large samples.

This solves the basic problem of estimating the variance for calibration estimators for totals t,. A

drawback of the method is that the second-order inclusion probabilities should be available and strictly
positive. We are currently working on (approximate) mathematical models for describing the sampling
design of complex surveys, such that second-order inclusion probabilities can be (approximately)
calculated.

It must be noticed that the above formulae for variance estimation need to be modified in case of
(substantial) non-response, when the sample s is in fact the respondent sample. Calibration is still
applied to adjust for non-response (see Dupont (1994), Skinner (1999), Lundstrom and Sarndal
(1999)). Variance estimation then becomes more difficult, but a complete discussion of it is beyond
the scope of this text.

Finally, we mention here a straightforward extension of the above formulae. Usually totals have to be
estimated for several study variables. The vector y should then be replaced with a matrix Y, of
dimension nx p, where p is the number of study variables involved. Hence the j-th column in Y

corresponds to the j-th study variable. Accordingly, fy becomes a vector, fy say, of calibration
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estimates of totals, b becomes a matrix, B say, of estimates of regression coefficients, and &
becomes a matrix, E say, of residuals, where:

E=Y-XB =Y -X(X"DX) X'DY, (111.40)
and, finally,

V(t,)=E"WAWE, (111.42)

is the estimated px p variance-covariance matrix for the vector fy of calibration estimators of the
totals of the study variables.

This extension is useful in practice, for several reasons. It shows how to deal with many survey
variables at the same time. For instance, if the frequency distribution with respect to a qualitative
variable has to be estimated, indicator variables have to be constructed, which then become the study
variables, for which simultaneous estimation is possible, following the above formulae (111.40) and
(111.42). The formulae are also useful with respect to implementation of (co-) variance estimation; see
section IV.C.2.vii.

Covariance estimates might also be useful, for instance, when ratios of estimates of totals are

considered. This is an example of a complex statistic; variance estimation can be based on Taylor
series expansion, which then involves estimates of both variances and co-variances.
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IV.A SOME OTHER IMPLEMENTATIONS

Before we start discussing our SPSS implementation g-CALIB-S, we briefly mention some other,
similar systems, developed at other statistical institutes during the past decade. Two of them, GES and
CALMAR, are SAS-based systems; the third one, BASCULA, is developed under Delphi. We do not
intend to give a complete discussion of these software packages, firstly because our documentation
about them is not complete, and secondly because we have no experience at al in running the
programs in practical or hypothetical situations. Nevertheless, the next few sub-sections may give an
indication of were our software can be placed in relation to those alternative tools.

IV.A.1 SAS-based system GES (Statistics Canada)

GES stands for Generalized Estimation System. According to Estevao et al (1995), GES is based on
the generalised regression (GREG) estimation framework, developed by Sérndal et al (1992). This
framework covers a class of calibration estimators to which many commonly used estimators belong.
However, the generalised calibration framework introduced by Deville and Sarndal (1992) is larger.

GES is accompanied with another SAS-based system, GSAM, the Generalised Sampling System. Both
systems cover several simple and more complex sampling designs, which becomes important in
variance estimation that is included in GES. The advantage of GES is thus the integration of
calibration, estimation (for totals, means, ratios and proportions, for the entire population or for
domains) and variance estimation, although only in the GREG framework.

IV.A.2 Calibration in BASCULA (Statistics Netherlands)

The new version of BASCULA is developed under Delphi for Windows 95 (Nieuwenbroek et al,
1997). BASCULA, like GES, is based on the GREG estimation framework. Whether the software will
also include weighting according to Deville and Sérndal (1992), as announced in Nieuwenbroek
(1997), is not clear. Variance estimation will be based on resampling techniques, in particular on
balanced repeated sampling (BRR). As GES, BASCULA is thus another more complete system,
integrating point estimation (and weighting) and variance estimation in one stand-alone package.

An interesting peculiarity in BASCULA is the way that the g-weights are bounded in the linear
method. Contrary to what is done in g-CALIB-S and in CALMAR, the g-weights are not truncated,
but rather rescaled (in a fairly complex way); the procedure is iterative. This seems to be a smoother
bounding technique than simple (iterative) truncation. It is worth to compare the methods, especially
given our experience that convergence under the truncated liner method in g-CALIB-S may be more
“difficult”; see section V.E.4 for an example.

IV.A3 The SAS module CALMAR (INSEE - France)

The SAS-module CALMAR, for Calage sur Marges, is based on the generalised calibration
framework introduced by Deville and Sarndal (1992); see also Deville et al (1993) and Sautory
(1993). Our tool g-CALIB-S is very close to CALMAR. They both concentrate on estimation of
calibrated weights and g-weights. A central device in both packages is the distance function G. From a
practical point of view, this is obviously very useful, since it allows the user to restrict the weights
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flexibly in various ways. From atheoretical point of view it isinteresting to notice that the generalised
calibration framework is (much) larger than the GREG framework.

CALMAR in some sense is better than our software g-CALIB-S, at least at present. CALMAR indeed
isuser-friendlier. Thisis mainly due to the fact that underlying quantitative and qualitative calibration
variables are automatically transformed into an explicit design matrix in CALMAR. This largely
reduces preparatory work on the data by the user her/himself. However, if several quantitative as well
as qualitative variables are calibrated on, then the user of CALMAR till has to do the required
transformations on his origina data, in order to obtain a standard format for his input data. For
instance, joint-effects for qualitative variables, or between a quantitative variable and one or more
gualitative variables, have to be generated through one or more additiona variables, which must be
constructed by the user. Another point where CALMAR is scoring better than g-CALIB-S is error
detection and reporting, definitely useful for the more application-oriented user.

It can be argued however, that our software g-CALIB-S is potentially at least as powerful as
CALMAR. This is a consegquence of using g-inverse matrices. If some practical problems could be
solved appropriately in g-CALIB-S, then this package will deliberately be very competitive too. Of
course, the approach outlined in this study can probably easily be implemented in CALMAR. At first
glance, looking quickly in the SAS/IML guide for matrix language, it is revealed that SAS has
powerful built-in procedures, which are not available in SPSS. Anyway, the experienced statistician,
with alittle feeling for maths, should be able to use g-CALIB-S efficiently. The applications discussed
in chapter 5 might illustrate this. The situation is comparable to a situation in regression modelling:
users of GLIM (Francis, 1993) should understand very well the theoretical background of this
package. Hence, people who like (statistical) puzzling a little bit, will like, and probably prefer, g-
CALIB-S.

Degspite its weaknesses, g-CALIB-S will soon become a universal tool at Statistics Belgium. Thisis
because SPSS will stay the basic statistical package, at least for some years. CALMAR will be studied
soon, and compared with g-CALIB-S, a the Department of Methodology and Co-ordination at
Statistics Belgium, since the members of that department very recently obtained alicense for SAS too.
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IV.B SPSS IMPLEMENTATION G-CALIB-S
IV.B.1 I ntroduction

In chapter 11 we have formulated the generalised calibration problem as a mathematical programming
problem, in terms of the calibrated weightsw :

{minD(d,w);X"w=t,g[@ 4}, (IV.1)
or in terms of the g-weights g :

{mind"G(g); X'Dg=t,g @ }. (IV.2)

Recal that Qg, if explicitly specified, takes the form [L,U]”, with 0<L<U (and, often,

1, 0[L,UT", i.e. L<1<U ; see section 111.A.2). Written as in (1V.2), it becomes immediately clear
which are the major data input for our calibration software: the design matrix X, the initial weight
vector d, and the calibration totals vector t; apart from this, the distance function G, and, occasionally,
the lower bound L and the upper bound U for the g-weights have to be specified.

In section IV.B.2 we describe the core module g-CALIB-S.sps, for which the above-mentioned data
are the main input. All input is defined through program parameters. There are some other parameters
than those mentioned here before, to be set by the user before running the program. These are, for
instance, the tolerance € in the convergence criterion and the maximum number of iterations. In the
same section we also discuss the features of g-CALIB-S, such as its output and requirements for
adequate functioning of the software. Notice the subtle difference between g-CALIB-S.sps and g-
CALIB-S, which may both be called “the core module’. The latter refers to the set of syntax files g-
PREPARE.sps (see hereafter) and g-CALIB-S.gps. It should be clear from the context, and from
inclusion or exclusion of the suffix “.sps’, about which of the two we are talking.

Never, in practice, the design matrix is presented as such, but has to be constructed from basic data
files (or databases). The form of X depends on the (set of) calibration model(s) the statistician wants to
apply, searching for an appropriate weighting scheme. In section IV.B.3 it is discussed in what form
the design matrix should be available for being read, as input, by the core module g-CALIB-S. In
section 1V.B.6 we discuss SPSS macros, which we have developed for constructing the design matrix.
Those macros are stored in the SPSS syntax file g-DESIGN.sps. It has to be noticed that it is up to the
user to prepare the data for g-CALIB-S. The macros are meant to facilitate that process;, we will
illustrate this extensively in chapter V. SPSS matrix functions are called from the macros, and calling
one of these macrosis a syntax command too, so the user should be familiar with the basics of matrix
language and macro facilities in SPSS. Matrix language is just an extension of basic syntax language.
Of course, input files for g-CALIB-S could aso be prepared by using other software, e.g. spreadsheet
software like Microsoft Excel, but the data construction process must always end with the creation of
two input filesfor g-CALIB-S, which are in SPSS data file format.

Section 1V.B.4 discusses a small auxiliary module g-PREPARE.sps, to be run just before g-CALIB-
S.spsis run. This module merely performs some preparatory data manipulations that are related to the
way the software deals with calibration strata (see section I11.A.1). In the future, we might consider
further developments of g-CALIB-S. Some of these could be included in the module g-PREPARE.sps,
as pointed out in section 1V.C.2.

In section IV.B.5 we present a rudimentary interface for the core module g-CALIB-S. Thisinterfaceis
merely a SPSS Production Facility job, by means of which it becomes easy for the user to specify
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values for the input parameters for g-CALIB-S. It also alows storing default values for the program
parameters. Different jobs, possibly with the same data input files, but with different sets of values for
other program parameters, can easily be stored.

IV.B.2 The core module g-CALIB-S.sps

IV.B.2.i Motivation

The heart of our SPSS software for generalised calibration is the implementation of the iterative
algorithm for calculation of the g-weights g; see section 11.D for the Basic Algorithm and section
I1.E.5 for the Extended Algorithm. The SPSS syntax is stored in the file g-CALIB-S.sps.

We have built this module with three objectives in mind: (1°) it should be as general as possible, (2°)
it should be easy to use, and (3°) it should be well-structured, to facilitate possible extension.
Generality should imply flexibility, in the sense that many different calibration techniques, from
traditional post-stratification methods to the most sophisticated extrapolation methods, could al be
handled in a similar way and with the same tool. This should encourage the statistician to explore
alternative extrapolation techniques for the survey for which she is responsible. I'm strongly
convinced of the fact that a general, unifying framework makes statistical methodology more
transparent for the practitioner, and that it creates an environment for more efficient communication
between applied statisticians, who might, at first sight, seem to do different things, but after all just
apply special variants within the same general framework. Variations on the same theme! Thus,
working within a uniform framework, it might be easier to understand what others are doing, and
thereof to learn from each other. Generalised calibration methodology provides the unifying
theoretical framework; g-CALIB-S is intended be a tool that completely reflects all features of the
theory. We believe that our software already reaches this objective to alarge extent.

We, methodologists at Statistics Belgium, have chosen to use SPSS for implementation of generalised
calibration techniques. Or, more correctly, we barely had a choice, and just started using SPSS as an
environment for implementation of calibration methodology. | think this has not at all been a bad
choice, since from now on our statisticians are offered a uniform framework and a general tool for
doing their job. Because of the simple fact that many statisticians were already SPSS users, it seemed
logical to develop more advanced methodology in the same statistical package. By the way, SPSS only
afew years ago became the general statistical tool at Statistics Belgium, just a few months before the
author of this text has joined the institute mid 1997. It might have been unredlistic, and practically
impossible, to switch to another statistical package for general use, with the mere purpose of being
able, from thereof, to buy specialised software modules for calibration, variance estimation, etc.

One of our objectives, the second one mentioned here above, i.e. that the software must deliberately be
easy to use, has been achieved by parameterising the computer program. This has been realised by
using the macro facilities in SPSS. We discuss these parameters at length here below. This section
IV.B.2 will close with a discussion of informative output (details about the iterative process, and
summary statistics) produced by g-CALIB-S, and of the output file (a SPSS data file) that contains the
g-weights and calibrated weights (among some other estimated statistics).

Finally, the reader might already have understood why our software has been called g-CALIB-S.
“CALIB", of course, stands for “calibration”. The meaning of “g-“ is twofold: it stands for
“generalised” in “generalised calibration”, but at the same time also refers to the (extensive) use of
“generalised” or “g-inversematrices’. Finally, “-S’ refersto “calibration strata”, and the way these
can be dealt with in g-CALIB-S.
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IV.B.2.ii Parametersin g-CALIB-S

A parameter in a SPSS syntax program is in fact a SPSS macro. A macro has a name, e.g.
@MyMacro, and some contents, called the macro body. The latter can be either a collection of
commands (SPSS syntax commands, in our application) or a string (enclosed or not between quotes);
the latter will be called text macros. If @MyMacro is atext macro, and if the SPSS syntax interpreter
detects, somewhere in a syntax program, the expression @MyM acro, then the contents of @MyMacro
are substituted and the SPSS processor continues running (i.e. executing) the syntax program. The
occurrence of @MyMacro, i.e. amacro name, in a syntax program is amacro call. In this section, we
need to understand only the use of text macros; some useful command macros are discussed in section
IV.B.6.

From now on, we will not distinguish between macro names (@MyMacro) and parameters for g-
CALIB-S. Thus we speak simply of “parameters’. Macro names used as parametersin our calibration
modules, are starting with the special character @. Thisis customary when macros are used in syntax
files: the purpose is to distinguish macro names from user-defined variable names, command
keywords, or other identifiers. Other special characters may be used, e.g. the exclamation mark (!), as
mentioned in the SPSS Syntax Guide.

g-CALIB-Sworks with 13 parameters. A shortlist is in the table below.

Table4.1 List of parameters used by g-CALIB-S, with short description

Parameter Description
(@macro name)
@WORKDIR The path defining the location of the input data files @XDATA
and @CALTOT; also the path for locating output files and
temporary files

@XDATA The name of the SPSS input data file containing the survey data

@CALTOT The name of the SPSS input data file containing the calibration
totals

@XVARS A SPSSvariable list, defining the names of calibration

variablesin the files @XDATA and @CALTOT, and used in
the current run

@STR 1 The number of thefirst calibration stratum to be processed in
the current run

@STR_N The number of the last calibration stratum to be processed in
the current run

@TYPE The calibration method, i.e. the distance function G

@SCALE A fixed value for the scale parameter @, if positive, or O or a
negative value to ask the program to calculate ¢

@L A fixed lower bound L for the g-weights

@u A fixed upper bound U for the g-weights

@TOL The tolerance € in the convergence criterion

@ITERMAX The maximum number of iterations

@INFO A parameter to specify whether more detailed intermediate

results have to be included in the informative output

We know discuss each of these parametersin detail.
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@WORKDIR The path defining the location of the input data files @XDATA and
@CALTOT,; aso the path for locating output files and temporary files

This parameter is a string, defining the path for locating the input data files for g-CALIB-S. It should
include the drive letter, and a complete directory structure. The general format is

<Drive>:\[<directory>\[<subdirectory>\[<subdirectory>\[...]]]]

Notice that the last character in this string must always be a backdash (\). <Drive>, <directory> and
<subdirectory> must be valid user-defined names, obeying general Windows rules.

Example: C:\My Documents\SurveyX\Calibration2001\

The output file (containing g-weights, calibrated weights, etc) is stored in the same directory; see
below for more details about thisfile.

The parameter @WORKDIR is case insensitive.

@XDATA The name of the SPSS input data file containing the survey data

This string parameter sets the name for the (a priori constructed) survey data input file, which
contains, among other things, the design matrix and the initial weights. A complete description of
contents and structure of the survey datafile is postponed to section 1V.B.3. The general format of this
nameis

<Filename>[.sav]

<Filename> must be a valid filename; the extension .sav is optional or can be replaced by any other
extension. However, the survey datainput file must be a SPSS datafile.

The parameter @XDATA is case insensitive.

@CALTOT The name of the SPSS input data file containing the calibration totals

This string parameter sets the name for the (a priori constructed) calibration totals input file, which
contains, among other things, the calibration totals for each calibration stratum. A complete
description of contents and structure of the calibration totals file is postponed to section IV.B.3. The
general format of thisnameis

<Filename>[.sav]

<Filename> must be a valid filename; the extension .sav is optional or can be replaced by any other
extension. However, the calibration totals input file must be a SPSS data file.

The parameter @CALTOT is caseinsensitive.
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@XVARS A SPSS variable list, defining the names of calibration variables in the files

@XDATA and @CALTOT, and used in the current run

This string parameter defines a list of variable names, which g-CALIB-S will try to find in both the
survey data file and the calibration totals file. We refer to the SPSS Reference Guide for details about
valid variable names in SPSS. Variable lists can be defined by using comma's or blanks to separate
variable names, and the keyword “TO” to intrinsically specify a collection of consecutive variablesin
the working datafile.

Example: X0, Al, A2, A3, B1, B2, AB11, AB12, AB21, AB22, AB31, AB32
and X0, Alto A3, Bl1, B2, AB11to AB32
and X0 to AB32

are equivalent variable lists, provided that no other variables are occurring in the input files between
the variable X0 and AB32. The is still some flexibility in the ordering of the variables in the input
files. For example, B1 and B2 might occur before A1, A2 and A3.

The @XVARS parameter is case insensitive.

@STR_1 The number of the first calibration stratum to be processed in the current run

This numeric parameter gives the number of the first calibration stratum to which the calibration
model, defined through other parameters, will be applied. Notice that the calibration strata are
numbered, using integers (1, 2, ...); the numbering of calibration strata is stored in the variable
STRATUM, which must be present in both the survey data file and the calibration totals file. See
section 1V.B.3 for details. The parameter has free format.

@STR_N The number of the last calibration stratum to be processed in the current run

This numeric parameter gives the number of the last calibration stratum to which the calibration
model, defined through other parameters, will be applied. Notice that the calibration strata are
numbered, using integers (1, 2, ...); the numbering of calibration strata is stored in the variable
STRATUM, which must be present in both the survey data file and the calibration totals file. See
section 1V.B.3 for details. The parameter has free format.

If the parameters @STR_1 and @STR_N contain the same stratum number, then only that stratum is
processed. If the value set through @STR_N is less than the value set through @STR_1, then only the
stratum with number @STR_1 is processed.

@TYPE The calibration method, i.e. the distance function G

This numerical parameter sets the calibration method, i.e. the distance function G or the calibration
function F. Four methods are implemented in our software; the corresponding values for @TY PE are:
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if the linear method is applied;

if the multiplicative or exponential method is applied;
if the truncated linear method is applied;

if the logit method is applied.

A OWNPF

If the user-specified value isnot 1, 2, 3 or 4 then the value is reset to 1, the linear method is applied,
and awarning message isincluded in the informative output. The parameter has free format.

A fixed value for the scale parameter @, if positive, or O or a negative value to

ask the program to calculate @

If a strictly positive value is set for this numerical parameter, then the scale parameter ¢ takes this

fixed value for each calibration stratum. If zero or a negative value is given, then this value is ignored,
and @ is calculated for each calibration stratum separately when the data for the stratum are

processed. Notice that setting @SCALE equal to 1 is equivalent to no a priori supplementary global
adjustment to the initial weights. The resulting value of the scale parameter, if calculated by the
program, is linked to the first calibration variable in the variable list defined through the parameter
@XVARS; see section 111.A.2 for details. The parameter has free format.

@L A fixed lower bound L for the g-weights

This numerical parameter isthe value of the user-specified lower bound L for the g-weights. The value
is ignored in the linear and in the exponential method. Notice that, for some values of L, the
calibration problem might be infeasible. The user should take care when s/he specifies @L ; see section
[1.C for details. The parameter has free format.

@u A fixed upper bound U for the g-weights

This numerical parameter is the value of the user-specified upper bound U for the g-weights. The
value is ignored in the linear and in the exponential method. Notice that, for some values of U, the
calibration problem might be infeasible. The user should take care when s/he specifies @U; see
section 11.C for details. The parameter has free format.

@TOL The tolerance € in the convergence criterion

This numerical parameter defines the tolerance level € in the convergence criterion. Notice that the
convergence criterion implemented in the current version of g-CALIB-S is based on the maximum
change in the g-weights in successive iterations; see sections 11.D and I1.E.5. Iteration stops if the
tolerance level is not exceeded anymore, or if the maximum number of iterations (set through
@ITERMAX, discussed hereafter) is reached, whichever occurs first.

The tolerance level has no effect for the linear method. The parameter has free format.
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If the method chosen is not the linear one, but one of the three iterative methods, and if the user
erroneously has given a zero or negative value for @TOL, then the program automatically resets
@TOL to the default value 10™ and awarning message isincluded in the informative output.

@ITERMAX The maximum number of iterations

This numerical parameter sets the maximum number of iterations. Iteration stops when the maximum
number of iterations is exceeded, or if the tolerance level (set through @TOL, as discussed above) is
not exceeded anymore, whichever occurs first. The maximum number of iterations has no effect for
the linear method. The parameter has free format.

If the method chosen is not the linear one, but one of the three iterative methods, and if the user
erroneously has set @ TERMAX to zero or a negative value, then the program automatically resets
the value to 100 and a warning message is included in the informative output.

@INFO A parameter to specify whether more detailed intermediate results have to be
included in the informative output

This string parameter specifies whether or not informative output, which aways includes some basic
information about the iteration process and summary statistics at the end of the iterations, is extended
with more detailed results of intermediate calculations. Such supplementary output is produced if the
value of @INFO isset to Y (or y); otherwise only the standard informative output is provided. The
user must be aware that the output can then be extremely long, since some output is at the level of the
observations. It is recommended to use this feature only when a previous run of the module was not
completed successfully, and when the user tries to locate where the program has failed.

This parameter @INFO is case insensitive.

IV.B.2.iii  The SPSSoutput data file WEIGHTS.sav

A SPSS datafileiscreated at the end of execution of the syntax program g-CALIB-S.sps. The name of
this file is invariably WEIGHTS.sav, and it is stored in the working directory specified through the
parameter @WORKDIR, which also contains the survey data file (defined through @XDATA) and
the calibration totals file (defined through @CALTOT). The variables stored in the file WEIGHTS.sav
are:

= CASE: an identification of the cases, which is acopy of the variable CASE in the survey
datainput file (see section 1V.B.3).

= STRATUM : anumbering of the calibration strata; values should be 1, 2, ..., which adso is a
copy of the variable STRATUM in the survey datainput file (see section 1V.B.3).

= SCALE: avariable containing the value(s) of the scale parameter ¢. Thisvalueis constant
within calibration strata, but may vary across calibration strata. A global positive
value is set by the user (through the parameter @SCALE), or a calibration
stratum-specific value is calculated by the program (see section I11.A.2 and
@SCALE in section 1V.B.2.i1).

= SCAWEI : the values of the so-called scaled weights (see section I11.A.2). These are the
initial weights d, multiplied with the scale parameter for the calibration stratum
to which case k belongs. The scaled weights are the new initial weights in the
calibration problem.
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= CALWEI: the values of the final calibrated weights w, (if the iteration process has
converged).
= G_WEIG: the values of the g-weights g, . Thisis the ratio between the calibrated weights

(in CALWEI) and the scaled weights (i.e. the new initial weights, stored in
SCAWEI).

The g-weights with respect to the initial weights d, can be found by multiplying the variable
G_WEIG with the variable SCALE. Notice that the initial weights d, are not stored in the output data

file WEIGHTS.sav. However, since the case identification variable CASE is present (with the same
name) in the survey data file too, the two files can be merged, so that input and output values for each
case are matched. Both the survey data input file @XDATA and the output file WEIGHTS.sav are
sorted by STRATUM and CASE at the end of running g-CALIB-S, in order to facilitate merging of
these files. Then, an alternative way to find the g-weights w.r.t. the initial weights d, isto divide the

variable CALWEI (which comes from the output file) by the variable WEIGHT (which comes from
the input file). Recall that the calibrated weights are not affected by the value of the scale parameter
(see section 111.A.2).

The user has to merge the files him/herself. Ones this is done, s’/he can explore the results more in-
depth by using the appropriate SPSS syntax or menu commands, or a specific syntax program may be
constructed to present the results in an appropriate format. For an illustrative example, see section
V.F.4. The module g-CALIB-S however produces some summary statistics automatically. This is
discussed in the next sub-section.

IV.B.2.iv  Informative output

By informative output we mean some crucial non-statistical information about each step in the
iterative procedure, more statistical information on the calibration variables at the end of the procedure
(ideally when convergence is attained), and some tables and box plots presenting summary statistics
on the scaled, the calibrated and the g-weights. These summary measures are calculated for each
calibration stratum separately. Informative output is stored in a SPSS Viewer file (with extension
.5p0). The name of thisfileisthe same as that for the SPSS Production Facility job-file, with extension
.5pp; see section IV.B.5.

Non-statistical information as well as statistical information may help to evaluate the validity of the
results, and to detect possible problems caused by badly specified data (in the two input files). Useful
features are, for instance:

= A measure for the relative change in the g-weights in successive iterations. It is this relative
change that has to be smaller than the tolerance level €, for “numerical” convergence.

= The number of negative current estimates of the g-weights (or calibrated weights) in each of the
iterations.

= The various substitutes for the calibration totals for each calibration variable, including the
calibration total s themsel ves (column labelled “Fixed”) and the calibrated estimates of these totals
(column labelled “CAL_est”), which should, at convergence, be the same. Totas labelled
“INI_est” are calculated using the initial weights in the survey data input file; totals labelled
“SCA_est” are calculated using the scaled (initial) weights.

= A relative difference between the fixed calibration total and the final calibrated total is calculated
for each calibration variable, and presented in the column labelled “% DIFF". At convergence
this relative difference must be near zero for each calibration variable. If these values are non-
zero, then the iterative procedure might not have been converged (yet), or there may be problems
with the data. Among these possible problems we might have numerical inconsistency for the
calibration totals, or a calibration variable with zero values only (within a specific calibration
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stratum) in the survey datafile, while a non-zero calibration total is stored in the calibration totals
file. The present version of g-CALIB-S does not detect such problems at the start of running the
program; care from the user who constructs the input files can however avoid easily this kind of
problems. Nevertheless, we intend to include more problem checking in new releases of g-
CALIB-S.

At the end of the iterative procedure, statistical information on the scaled weights, the calibrated
weights and the g-weights includes, for each calibration stratum separately:

= The minimum, mean, median and maximum, the standard deviation and the sum, and the 5“‘, 25”‘,
75" and 95™ percentiles. The sum of calibrated weightsis of particular interest: it is the estimated
number of cases in the population in a given calibration stratum. It is equal to afixed calibration
total if a constant calibration variable (with values all equal to 1) is included in the survey data
input file.

= Box plots showing the distribution of the scaled weights, the calibrated weights and the g-weights
in each calibration stratum.

Finally, SPSS users know that through the menu Edit—Options in SPSS windows one can specify
which other output can be included in the Viewer output file. For instance, it may be useful to have all
commands in that file (the “log”), or warning messages, etc. Such additional output may be helpful to
find out where things went wrong in case of program failure. For more details, the user is referred to
the SPSS User’s Guide.

In chapter V, output files in the context of several case studies will be discussed. Some complete
output fileswill also be reproduced for illustrative purposes in the Appendices.

IV.B.3 Input filesfor g-CALIB-S

g-CALIB-S needs two input files, referred to by their equivalent parameter names @XVARS and
@CALTOT hereafter (see section 1V.B.2.ii). We here discuss the contents and structure of thesefiles;
in section 1V.B.6 we discuss their construction from basic data files, using some macros developed
especially for that purpose.

Given the calibration problem (1V.2), it will be obvious that the design matrix X and the weight vector
d, i.e. the survey data, are stored in the survey data file @XDATA, and that the calibration totalst are
to be stored in the calibration totals file @CALTOT. Some rules should be strictly followed, as
explained hereafter.

The survey datafile @XDATA must include three variables with fixed names. These are:

= CASE: a unique identification of the cases. As explained in section I1V.B.2iii, this
variable will be copied to the output file WEIGHTS.sav.

= STRATUM : anumbering of the calibration strata; values should be 1, 2, .... This variable too
is copied to the output file WEIGHTS.sav (section IV.B.2.iii).

= WEIGHT : the variable containing the initial weight vector d.

Apart from these three variables, variables with user-specified names will hold the columns of the
design matrix X. No specific restrictions apply to these variables, but some recommendations could be
taken into account. Variables (or columns in X) corresponding to the same term in a calibration model
formula, as explained in section I11.A.1, should be kept together in @XDATA. This is useful since
these variables always need to be used together, in any possible calibration model. It will then reduce
the length of the list of variables @XVARS. For the same reason, it is aso convenient to keep all
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calibration variables together, i.e. not to mix up these variables with the variables CASE, STRATUM
and WEIGHT, or with any other set of variables that is stored in @XDATA. The latter variables can
be original variables, such as qualitative variables, which are to be transformed into a set of indicator
variables (with values 0 and 1) before they can be used as calibration variables. Other (original)
variables that could be stored are variables holding an alternative series of initial weights, or an
aternative calibration stratum specification.

There is one important restriction on the variables' values: STRATUM, WEIGHT, and the calibration
variables should have real values only. Otherwise, the program will fail. Moreover, there should be no
missing values in these variables. The occurrence of missing values in any of these variables will
cause failure of g-CALIB-S. The user should eliminate cases with missing values in these variables
before running the program. (l.e. item non-response must be treated as unit non-response.)

To illustrate this, consider a calibration problem with model formulaA*B=1+ A+ B + A.B, where A
and B are qualitative variables with 2 and 3 categories respectively. Suppose that the user has
constructed variables X0 (identically 1), Al and A2, B1, B2 and B3, and AB11, AB12, AB13, AB21,
AB22 and AB23, then the structure of the file @XDATA will be, for instance:

CASE STRATUM WEIGHT XO0A1A2B1B2B3AB11 AB12 AB13 AB21 AB22 AB23

possibly followed (or preceded, or ...) by other variables (from the basic data file, and prepared for
possible use later on). The following variable lists @XVARS, for instance, are then possible:

= X0,Al, A2,B1toB3, AB11to AB23 forthemodel 1+ A+ B+ AB=A*B
= X0,Al1 A2 forthemodd 1+ A=A

= BltoB3 forthemodel 1+ B=B

= ABlltoAB23 again for the model A*B

= elc

It can be noticed that the names of the calibration variables in the file @XDATA are arbitrary,
provided the usual SPSS rules are satisfied. Names should be chosen with care, such that model
specification and interpretation of resultsis not too much complicated. (Once adatafileis constructed
the user can complete the data dictionary of the input files.)

The second input file, @CALTOT, must have a similar structure as @XDATA. Of course, variables
CASE and WEIGHT do not appear in this file. STRATUM and all user-specified variables will be
present, and the calibration variables should appear in the same order as they appear in @XDATA. No
other variables need to be included, athough the user can add some. Hence the structure
corresponding to the model formula A*B could (for instance) be:

STRATUM X0A1A2B1B2B3AB11 AB12 AB13 AB21 AB22 AB23

Each row in @CALTOT corresponds to a particular calibration stratum, and contains the calibration
totals for al the variables for that stratum. Each row thus contains a stratum-specific vector t. In the
same way, al rowsin @XDATA that correspond to cases in the same stratum, do contain a stratum-
specific design matrix X. Notice that the numbers of rows in each of these matrices are generally
different, but corresponding columns are representing the same calibration variable.

All this explains how data for different strata can be separated from each other, and therefore also be
treated separately.
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IV.B.4 The auxiliary module g-PREPARE.sps

A small auxiliary syntax module g-PREPARE.sps has to be run before the core module g-CALIB-
S.sps is executed. Notice that together, g-PREPARE.sps and g-CALIB-S.sps are constituting the
calibration software g-CALIB-S.

The module g-PREPARE.sps merely performs some final preparation on the two input files
@XDATA and @CALTOT. The main functionality of g-PREPARE isto sort the filesby STRATUM.
It further counts the number of casesin each stratum (in @XDATA) and computes the record numbers
of the first and last case in each stratum in the sorted @XDATA. This information is temporarily
stored in @CALTOT. The module g-CALIB-S.sps itself will remove this information after estimating
the g-weights for each stratum. If the program fails, it usually doesn’'t reach the point where that
information is removed. Then the user might have to remove it manually from @CALTOT. However,
the presence of that information in @CALTOT at the start of a session should not cause problems, as
long as the number of cases per stratumin @XDATA doesn’t change.

IV.B.5 Theinterface: a SPSS Production Facility job

We have used SPSS Production Facility, delivered together with SPSS Base, to create an interface to
the calibration software g-CALIB-S. The start-up screen of such ajob is shown here below. The name
of the job-file (with extension .spp) isfree; hereitiscalled g_ANJA.spp.

2o SP55 Production Facility M= E3
File Edt Bun ‘Windows: Help

s = EE

os C:AVWINDDWSATEMPAg-ANJA spp [ _ [ ]

Creator/owner: ||amille. vanderhoeft

ayntax Files: [ C:4803-brmcnewsCalibration\g_CaLIB\g-PREPARE . 5PS
:4303-bmenewsCalibrationg_CALIBLYg-CALIE-S. gps
C:hvActuaris_stagehCazes\Anja'E stimates. SPS

Knj oy

aad | e £
Comments: Jobname: g-4MJa [in 5PP file] =)
Output will be in file <jobhame: SPO _I
- Fi o e Output Type
nink aukput on completion of @ .
P F I ’VF Wiewer = Diraft Yiewer

CAActuans_stagehCasestanja Browse... |

|' Falder far autput

E xport Optionz... | zer Prompts...
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The Syntax Files box shows that two syntax files are called: g-PREPARE.sps and g-CALIB-S.sps (the
order is important!). Other syntax files (constructed by the user) may be added either before, to
prepare the data, or after, to manipulate the results. The Comments box is useful to put information
about the job, e.g. generalities about the calibration model or the data being used. In the Folder for
Output box, the user can specify where the program has to store the Viewer output file (.spo), and
occasionally other output files that are specified through the Export Options... button (see later).
Notice that the folder specified in the Folder for Output box is not the folder where g-CALIB-S will
store the output file WEIGHT S.sav.

Recall that g-CALIB-S (i.e. g-PREPARE.sps and g-CALIB-S.sps) is fully parameterised (section
IV.B.2.i). SPSS Production Facility translates each parameter, @PAR say, into a text macro named
@PAR. These macros are stored in the temporary file SPSSProd.spp, which is stored in SPSS's
general folder for temporary files (e.g. C:\windows\temp), and which is automatically “included”
before g-PREPARE.sps and g-CALIB-S.gps are “included”. Notice that, if the user intends to insert
his own syntax files through the Syntax Files box, these syntax files then have to be constructed
according to the general SPSS rules for include files (see SPSS Base User’s Guide). An advantage of
including user-constructed files in the same job, is that the same parameters (@QWORKDIR,
@XDATA, ...) then can be used in the user-constructed syntax files. This allows flexible extension of
the basic calibration software with other modules, for instance for estimation of totals of study
variables.

Clicking on the User Prompts... button opens the User Prompts window (not shown here). The user
should open this window only if standard or default settings for the program parameters (starting with
@) have to be changed. So we recommend that the user of g-CALIB-S only changes the entries of the
column Default, if necessary. The other columns should only be used by the devel oper of the interface,
and the software behind.

After modifying the contents of the start-up screen, the user can save these changes (and rename the
job file) if s’he wishes. Next the Run button (™) can be clicked to start running the job. Then the user

is presented the User Prompts for <jobname.spp> window, where s/he can finally set the appropriate
values for the parameters, as explained in section IV.B.2.ii. An example of this window is shown
below.

o User Prompts for C:AWINDOWSATEMPAg-ANJA =pp E

Full path to current directony IE:"-.-'l‘-.ctuaris_stage"-.Eases'\.ﬁ.nia& j

File [.zav] with individual survey data IED"EDSEd Diata zay
[rAze weinht «'s o'z strabum) -

File [.zaw]) with calibration totals per ITDtaIs.sav
stratum [w'z stratum

List of selected calibration wariables |:><|1 B1toBE, SE11ta SE23
lin >NATA Aand FAl TIATI

Firzgt stratum being processzed |-|

Last gtratum being processed Ig]

Type pf calibration [1 =|i_near, |2

2=rakinn 3=strncated linrar 4 =

E}verall adjustement [from data if <= |-| LI

k. I Cancel | Help |
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og User Promptz for C:AWINDOWSATEMPAg-ANJA spp Ed

Type of calibration [1=linear, |2 ;I

P=rakinn A=trncated inear 4 =

Overall adjuzsternent [from data if <= |-|
i

Laower bound of g-factar [Tvpe = 3 ar In_?
41

|lpper bound of g-factor [Type = 3 or |-| 5
41

Tolerance ||:|_|:||:||:||:||:|-|
. number of iterations [TYPE = 2. |-||:||:|
Amrdl

Frint detailed iteration information ? IN

' mr M1

g

2k, I Cancel | Help |

(Notice the rather bad quality of the prompts: the second line is not shown completely, which is dueto
SPSS, and not to the developers of g-CALIB-S; one-line prompts would be better, and the user
actually can change the prompts, once s/he understands how the software works.) When all parameter
values are set, the OK button is clicked and SPSS then starts running the job.

By default, a job is running in background. However, through the Edit-Options menu in SPSS
Production Facility, the user can ask SPSS being shown up while running the job. For this and more
functionalities of Production jobs, the user is again referred to the SPSS User’s Guide.

One more feature is worth mentioning here. Clicking the Export Options... button in the start-up
screen alows to specify that output is also stored in, for instance, aHTML file, which will be saved in
the folder specified through the Folder for Output box in the start-up screen. We recommend using this
feature, since the HTML file is numbering the syntax commands, which makes it easier to detect
where exactly the program has gone wrong, in case of failure. Notice that error messages usually
include a command line number.

IV.B.6 The auxiliary module g-DESIGN.sps

In the syntax file g-DESIGN.sps we simply have stored some macros that may help the user to
construct the design matrix in agiven calibration problem. These macros are:

DesC1 to create an indicator variable matrix for 1 qualitative calibration variable A,
i.e. that part of a design matrix X that corresponds to the term A in a
calibration model formula (section 111.A.1);

=DesC2 to create an indicator variable matrix for 2 qualitative calibration variables A
and B, i.e. that part of adesign matrix X that correspondsto theterm ABin a
calibration model formula;

=DesC3 to create an indicator variable matrix for 3 qualitative calibration variables A,
B and C, i.e. that part of a design matrix X that corresponds to the term A.B.C
in acalibration model formula;
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sDesC1Z to create an interaction matrix for 1 qualitative calibration variable A and 1
quantitative calibration variable Z, i.e. that part of a design matrix X that
corresponds to the term A.Z in a calibration model formulg;

»DesC2Z to create an interaction matrix for 2 qualitative calibration variables A and B,
and 1 quantitative calibration variable Z, i.e. that part of adesign matrix X that
corresponds to the term A.B.Z in a calibration model formula;

"DesC3Z to create an interaction matrix for 3 qualitative calibration variables A, B and
C, and 1 quantitative calibration variable Z, i.e. that part of a design matrix X
that corresponds to theterm A. B. C.Z in acalibration model formula.

Hence, up to third-order interaction effects can be included in the calibration models, if the design
matrix construction is only based on our 6 macros. It would not be difficult to write new macros for
higher-order interaction effects, but before doing this, | intend to rewrite the macros, in order to avoid
duplication of calculations. At present, the user should construct higher-order terms her/himself.
Notice that the macros in g-DESIGN.sps are not used by the software g-CALIB (i.e. g-PREPARE.sps
and g-CALIB-S.sps). Notice that the macro names do not start with a special character (such as @ for
the macros discussed in section 1V.B.2.ii). Therefore, the user should not use the macro names for
other identifiers (variables), when using the macros.

All 6 macros are functioning with input and output arguments. The syntax is as follows:

DesCl  var=varname des=matname |ab=vecname

DesC2  varl=varnamel var2=varname2 des= matname lab=matname2 p=num

DesC3  varl=varnamel var2=varname2 var3=varname3 des= matname |ab= vecname
p=num

DesC1Z var=varname zet=quantnam des= matname lab= vecname

DesC2Z varl=varnamel var2=varname2 zet=quantnam des= matname lab= vecname p=num

DesC3Z varl=varnamel var2=varname2 var3=varname3 zet=quantnam des= matname lab=
vechame p=num

The input arguments are var, varl, var2, var3, zet and p; output parameters are des and lab. Varname,
varnamel, varname2 and varname3 are user-specified names of qualitative calibration variables (A, B,
...), quantnam is a user-specified name of a quantitative calibration variable (Z), matname is a user-
specified name of a matrix that will contain, at exit of the macro, the constructed part of the design
matrix; vecname is a user-specified name of arow vector that will contain, at exit of the macro, a set
of constructed numeric labels for the columns in the matrix matname. Num should be set such that the

computed labels are meaningful; i.e. num should be chosen such that 10™™ -1 is at least the largest
value assumed by the qualitative variables defined through arguments var or varl (and var2 (and
vard)). |.e. if the values of the qualitative variable(s) vary between 0 and 9, then num should be at least
1, if the values of the qualitative variable(s) vary between 0 and 99, then num should be at least 2, etc.

Input arguments for the macros should contain only numerical variables, and no missing values should
be present. (I work on the software to treat incomplete data, i.e. to deal with missing data.) |
recommend to use only integers 1, 2, ... for values of qualitative variables, although thisis not strictly
required for adequate functioning of the software.

To illustrate, consider the following small hypothetical example. Let the original data on 8 cases, in 5
variables or columns, be as follows:
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I D VEEI GHT STRATUM A B z

1.00 10.00 1.00 1.00 1.00 15.00
2.00 10.00 1.00 1.00 1.00 17.00
3.00 12.00 1.00 1.00 2.00 12.00
4.00 10.00 1.00 1.00 2.00 12.80
5. 00 5. 00 1.00 2.00 1.00 10.50
6. 00 5. 00 1.00 2.00 1.00 12.00
7.00 5. 00 1.00 2.00 2.00 13.40
8. 00 5. 00 1.00 2.00 2.00 12.00

The column headings are the variable names, stored in the data dictionary of the survey data file (an
SPSS data file, say). We assume that A and B are qualitative variables, while Z is a quantitative
variable. STRATUM is qualitative too, with, in general, H categories. It is important for this variable
that all categories 1, 2, ..., H are represented in the survey datafile. In our example, H = 1.

Standard SPSS matrix commands (i.e. the GET command) are used to read the case identifiers, the
case weights, STRATUM, and the survey variables A, B and Z into vectors ID, WE, STRATUM, A, B
and Z, say. (Names are not really important, so far.) Now, suppose that the maximal calibration model
is specified through the model formulal+ A+ B+ Z+ AB+ AZ+ B.Z Then g-DESIGN providesthe
required macros DesCl, DesC2 and DesClZ to transform the vectors A, B and Z into the
corresponding columns of the (maximal) calibration design matrix X. The constant term is easy to
construct, using matrix functions nrows and make. The matrix commands are:

conpute X0 = nmake(nrows(1D), 1, 1) [* Term 1 */.
DesCl var =A des=XA | ab=LabA [* Term A x|,
DesCl var=B des=XB | ab=LabB /[* Term B x|,
DesC2 var 1=A var 2=B des=XAB | ab=LabAB p=1 /* Term A B */.
DesClZ var =A zet=Z des=XAZ | ab=LabAZ /[* Term A Z */,
DesClZ var=B zet =Z des=XBZ | ab=LabBz /* Term B.Z */ .

X0, XA, XB, XAB, XAZ, XBZ and also Z are matrices, with, in our example, numbers of columns
equal to 1, 2, 2, 4, 2, 2 and 1, respectively; those matrices are the corresponding parts of the design
matrix X. The survey data input file @XDATA is then easily created by the following SPSS matrix
command, which saves the original data and the (maximal) calibration design matrix into that file:

save {ID, WE, STRATUM A, B, Z, X0, XA, XB, XAB, XAZ, XBZ}
foutfile = 'C\ny docunents\calibration\’ + @XDATA /format = F3
/vari abl es = CASE, VEI GHT, STRATUM A, B, Z, X0, A1, A2, B1, B2,
AB11, AB12, AB21, AB22, A1Z, A2Z, B1Z, B2Z.

The file @XDATA now contains the following data:

CASE VEI GAT STRATUM A B Z X0 Al A2 Bl B2 AB11 AB12 AB21 AB22 AlZ A2Z BlZ B2Z
1 10 11115 1 1 0 1 O 1 0 0 0 15 0 15 0
2 10 11117 1 1 0 1 O 1 0 0 0 17 0 17 0
3 12 11212 1 1 0 0 1 0 1 0 0 12 0 0 12
4 10 11213 1 1 0 0 1 0 1 0 0 13 0 0 13
5 5 12111 1 0 1 1 O 0 0 1 0 0 11 11 0
6 5 12112 1 0 1 1 O 0 0 1 0 0 12 12 0
7 5 12213 1 0 1 0 1 0 0 0 1 0 13 0 13
8 5 12212 1 0 1 0 1 0 0 0 1 0 12 0 12

The top row isjust the list of variable names — as defined by the user — stored in the data dictionary of
the file. The last 14 columns, from Z to B2Z, constitute the (maximal) design matrix X. Notice that z-
values are displayed as rounded to integer values; the exact values are stored in thefile. It is clear that
there are several linear dependencies between the columns: the matrix X has 14 columns, but its rank
is only 7. Constructing the file @XDATA is this way has an important practical consequence: any
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sub-model, including the model 1, or the model Z, of the maximal model 1+ A+B+Z+AB+AZ+
B.Z can then easily be applied, just by selecting the appropriate variables from @XDATA. The list of
variables to be selected is easily specified through the parameter @XVARS, as explained in section
IV.B.2.i.

Before constructing the above SAVE command, the user can print the contents of the vectors that
contain the labels for the columns in the matrices constructed by the macros. An appropriate PRINT
command might simply look like:

print {LabA, LabB, LabAB, LabAZ, LabBZ}.
or, including some information about what is printed:
print {LabA} /title "A categories are net in the follow ng order:".

Inspecting the output from such commands helps the user to define the list of variable names in the
variable' s sub-command in the above SAVE command.

Finally, notice that all commands presented in this section are matrix commands. They must therefore
be executed only from within a matrix program. A matrix program is simply a set of matrix
commands in a syntax file, delimited by the MATRIX and END MATRIX commands. The user is
referred to, for instance, the SPSS 7.5 Advanced Model Guide. Notice that more recent versions of
SPSS now include matrix language in the SPSS Base module. This implies that the SPSS Advanced
Models module is not needed anymore to run our calibration software (including g-CALIB-S!).

The file g-DESIGN.sps is reproduced in appendix VI1I.A.2. The core modules g-PREPARE.sps and g-

CALIB-S.sps are not reproduced in this report. Interested potential users can contact us: see section
VII.A.1 for practical information.
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IvV.C COMMENTS, AND FUTURE DEVELOPMENTS OF G-CALIB-S
IV.C.1 General comments

IV.C.1i SPSS as a devel opment environment

SPSS is considered primarily as an application tool for statistical purposes, and that’s exactly what it
is. But | think it can be more, and in my humble opinion, | think that this work has demonstrated that
SPSS is not so bad for development purposes. Generalised calibration is not a trivial statistical
problem — or should we say mathematical problem, from the applied discipline of operations research?
— and we have deliberately realised a useful tool. At the moment that we started implementing the
methodology, we had no idea about all the features with respect to programming (accompanied with
al the pitfals!) offered by SPSS through its basic syntax language, matrix language and macro
facilities. SPSS basic syntax language is mainly designed for data manipulation; the main object
handled by basic syntax commands is the variable, not the case. This makes basic syntax commands
sometimes difficult to understand, especialy for the novice, and consequently also difficult for
programming. Fortunately, there is the more traditional matrix language (including macro facilities),
which is capable of filling in the gaps in the basic syntax language. It is that combination of basic
syntax language and matrix language that makes SPSS suitable for devel opment purposes.

True, people are right when they say that SPSS's programming language is old-fashioned, but that’s
completely out of the question here. Our problem is to have access to a system that allows applying
the most modern techniques in survey processing. This problem could be solved in different ways: we
could buy another statistical package, so that we could then buy specialised routines that have been
developed at other statistical institutes or universities; or we could ask our informatics department to
devel op a stand-alone package (for calibration) in whatever computer language they want; or we could
return to the system of pen and paper (extended with scissors and glue to cut and paste): “keep it
simple’. Finally, we have opted — or rather: we were forced to choose — for a do-it-yourself solution.
The result of thisis now available for usage, evaluation, improvement, or depreciation, asyou like.

Once more, | want to stress here the fact that we not only constructed just another tool (toy?)
statisticians can work with, but that we have built up, in doing all this programming work, some know-
how in calibration. And that’ s finally what we really have to be concerned about.

In the course of developing g-CALIB-S, a process that is not necessarily finished yet, we learned a lot
about SPSS syntax language. Looking up things in SPSS reference guides, we detected new features.
Sometimes, we were able to exploit these immediately, but more often, we had to postpone their use,
since it might take some time to work out new ideas, and since this would have delayed issuing a
“final product”. One of these features is scripting. This might help us to construct a user-friendlier,
and more automated, system. We'll see!

The Department of Methodology and Co-ordination at Statistics Belgium will have to decide soon
how it will proceed further with respect to implementation of calibration and other survey
methodology. It has by now purchased the SAS system. So, advantages and disadvantages of both
SPSS and SAS will have to be examined. It is likely that both systems will continue being used at
Statistics Belgium, at least for the next few years. This, in my opinion, justifies at least some minor
modifications and improvements in g-CALIB-S, provided perhaps that this work will not cost to much
time and human resources. Suggestions for such improvements and extension of our software are
presented briefly in section IV.C.2.
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IV.C.1ii Performance of the SPSS modules

Persistence of g CALIB-Swill depend largely on its performance. As the software will from now on
be used more and more to support calculation of weighting factors, larger data sets will have to be
treated soon. Thisis the ultimate test! So far, we have experienced good results with g-CALIB-S, but
sometimes, the processing time istoo large for being acceptable in practice. | cannot give much detail
yet on evaluation of performance. Thisis a study of another nature, and | didn’t have enough time to
work it out for this report. Moreover, as we are running SPSS on PCs, hardware specifications will
have to be taken into account. Also, performance of g-CALIB-S should be compared with
performance of similar packages, such as CALMAR, which isrunning under SAS.

It must also be said that performance of SPSS Base will play an important role in this evaluation. We
have developed g-CALIB-S under SPSS's version 9.0, athough version 10.0 is now available too. The
reason is that our modules were not always running as they should, under SPSS 10.0. When trying to
understand why failure occurred, we often came to the conclusion that bugs in SPSS itself were
responsible. For some problems we could find a “SPSS 10.0 solution”, but implementation of such
solutions would imply abandoning of what we thought being logical programming.

Finally, we like to mention that our modules are running without problem under SPSS 8.0 (Base and
Advanced Statistics modules).

IV.C.2 Future developments

IV.C.2i Error detection and reporting

More work could be done on error detection and reporting. We have aready built in some tricks to
capture and solve mistakes in input parameters (@...); thisisthe easy part.

More difficult, but more important, to detect and solve are problems related to the data. At least two
problems deserve special attention: consistency and missing values. In principle, these problems
should be easy to solve, exploiting features of matrix language that have not been used so far.

The most difficult problems are related to badly conditioned data. We have already tried to provide
measures that indicate why the program fails, or why convergence is slow or not attained at al. We
refer to section 1V.B.2.iv for details; also refer to the discussion of the program parameter @INFO in
section 1V.B.2.ii. Apart from inspection of these measures in the Viewer output file, we have to rely
on SPSS error messaging. Here, the HTML output file (section 1V.B.5) can help to locate the place
were the program goes wrong.

After all, the user should take care when constructing the input data files. The subject matter
statistician will play an important role in that phase of survey processing. Armed with a good
understanding of the specificities of a given survey, and with detailed documentation of the data files
and databases, she will generally be able to point out quickly how to circumvent data-related
problems.

IV.C.2ii I mplementation of determination of the maximum lower bound L™ and minimum upper
bound U

In section 11.C we have proposed a method to detect extreme values for the upper and lower bound on

the g-weights in the truncated linear and in the logit method. It was shown that the problem can be
found as the solution of alinear programming problem, which in turn can be solved with the simplex

-84 —



algorithm. Matrix language in SPSS provides the function SWEEP(matrix, k), which produces a new
matrix by pivoting matrix on the element in the k-th row and k-th column. Pivoting is the main
operation in the simplex algorithm, whence | believe that implementation of our technique in SPSSis
feasible.

The SAS system would simplify the task alot. Surprisingly (or not?), SAS/IML, the matrix modulein
SAS, provides a procedure, called LP, to solve a linear programming problem of the form (11.6). So,
SAS users would not have to implement the simplex algorithm. CALMAR devel opers should consider
it!

IV.C.2.ii  Improving the interface: using Scripting

In the SPSS Base 9.0 User's Guide (p. 675) it is stipulated that scripting allows us to “ (1°)
automatically customize output in the Viewer, (2°) open and save data files, (3°) display and
manipulate dialog boxes, (4°) run data transformations and statistical procedures using command
syntax, and (5°) export charts as graphics files in a number of formats ”. The relevance of all these
features is not obvious, yet, but some of them might be interesting for further evaluation. It seems that
scripting can be used to construct at least a better interface to the core modules. Given this, it might
also be possible to add more flexibility and functionality to our software.

| believe that scripting is worth being considered, although | have currently no experience at all. One
advantage of script language is that it is based on the Sax Basic language (op. cit. p. 675), an object-
oriented programming language (and therefore more attractive to contemporary programmers).
Combination of script language with syntax language (including matrix language) probably provides a
powerful combination for programming in an SPSS environment.

IV.C.2iv  More automated construction of @XDATA and @CALTOT, including management and
exploitation of complex files

It would be nice if the input files @XDATA and @CALTOT could be constructed more
automatically, i.e. if we could develop modules, probably survey-specific, to transform basic databases
into appropriately structured input files for g-CALIB-S. This would require perfect understanding of
how basic databases are constructed, on the one hand, and which SPSS features are available for
reading these databases, on the other hand. Definitely, more co-operation between methodologists in
the information department and methodologists in the statistical department is desirable. Possibly
other development tools can be integrated at this point. | believe that the present calibration study is
providing indications concerning the construction of databases and files. Each case study definitely
provides indications on how to set up an efficient data management system (for a given survey). The
result should be a series of transformations of datafiles, with the restriction that the number and extent
of transformation must be kept to a strict minimum, such that in different phases of survey processing
appropriate and general tools can be used efficiently. More research has to be done, since we are now
only at the beginning of implementation of calibration methodology in daily statistical practice. The
literature on calibration methodology is aready a step ahead of using basic calibration techniquesin a
less complex situation, as discussed in this text. The reader is referred to Renssen (1998) for
calibration in more complex situations; see also the references in that paper. The ultimate aim is to
integrate several surveys in the same system, and to produce thereof estimates that are consistent
across the various surveys.

SPSS dlows reading and constructing files with a more complex structure than the common
rectangular structure. We have recently created such a file, based on tax registers. The final file has
records of two types: household records, and records corresponding to the person(s) (usually a single
person, or husband and wife) within the same fiscal household. We will try to link this file with a
register of administrative households, which is deduced from the register of Belgian citizens. Our goal
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is to use indicative information on income, either in the design phase or in the estimation (calibration)
phase of household based surveys. SPSS can handle rectangular files, nested files, grouped data files
and mixed files. The above mentioned data file, with information from the tax register, has a nested (or
hierarchical) structure. FILE TYPE and RECORD TYPE commands, followed by a DATA LIST
command, allow reading the file as a person file, combining household information with person
information. Alternatively, the nested file can also be read as a household file (using only the DATA
LIST command), provided each household occupies the same number of records for each household.
Otherwise, arectangular household file can be constructed from the previously constructed person file.

IV.C.2.v More efficient treatment of calibration strata

The notion of calibration strata is a very useful one in practice. Here before we mentioned problems
when large data sets are analysed. Introducing calibration strata definitely reduces problems related to
the size of the survey datafile: calculations are done stratum per stratum, having only the data for the
stratum considered in the memory. Currently, however, g-CALIB-S reads the complete data set each
time processing of a new stratum starts, next the relevant data is copied to new matrices, while the
matrices holding the complete data set are released again. This is likely to be time consuming and
should be avoided whenever possible.

To circumvent these problems, | intend to use the split-file processing facility in combination with
matrix language. However, its feasibility has to be examined further, since the data for one stratum
should then be read in asingle GET statement. The split-file approach seems to offer more flexibility
with respect to the definition of calibration strata. On the other hand, it might require another
structuring of data files: remember that currently data are read from two input files (@XDATA and
@CALTOT). But rewriting the module g-PREPARE.sps could solve this problem: g-PREPARE.sps
could merge @XDATA with @CALTOT, in order to construct asingle input file for g-CALIB-S.gps.

Alternatively, the case selection feature could be examined for usage with matrix language.
Concerning both the case selection and the split file feature, we refer to the SPSS syntax guides (on
matrix language) for more details.

IV.C.2vi  Calculation of calibration estimates for study variables

It would not be difficult to extend our software with a module for calculation of estimates of totals of
study variables. Notice (1°) that study variables can be included in the survey datafile @XDATA, and
(2°) that this file can easily be merged with the output file WEIGHTS.sav, holding the final g-weights
and calibrated weights. Treatment of missing values can be considered; the required formulae have
been discussed in section I11.F.

Basic syntax commands may be used for these purposes. However, matrix language too is an option,
especially when (preparation for) variance estimation is considered (see the next sub-section), and/or
when simultaneous estimation of totals for several study variablesis considered.

IV.C.2.vii  Preparing for (co-) variance estimation

In section I11.H we briefly discussed variance estimation in the context of generalised calibration. It
turns out that this can be based on calculation of (linear) regression residuals. This only involves the
design matrix, the (initial/sampling or calibrated) weights, and, of course, the study variables.
Conditionally on having read these data structures from the relevant file(s), it would then be easy to
implement the calculation of residuals: one matrix command would suffice (in principle). Showing yet
again the efficiency of matrix language, both in mathematics and in programming languages!
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Calculation of residuals is one very important step in variance estimation. Ultimate calculation of
variances, however, involves the second-order inclusion probabilities. For some complex designs, this
may need the construction, storage and usage of very large square matrices, of order n, holding the
second-order inclusion probabilities. For less complex designs, however, one might be able to reduce
storage of large second-order inclusion probability matrices to storage of smaller vectors or matrices
just holding the parameters necessary for calculation of second-order inclusion probabilities.
Appropriate software modules then have to be developed to combine all the components in variance
estimation formulae.

IV.C.2.viii  Extension of the calibration models with the weighting factors g

Our software currently deals with the calibration problem {mind"G(g);X"g=t,g@ 4}. The

extension {min d"Q'G(g);X"g=t,g DQB} will be implemented soon. Notice that this will imply
another variable to be read from the survey datainput file @DATA.

A variable holding the factors g, would be similar to the variables STRATUM, WEIGHT and CASE

that have to be present in the survey data input file. It is planned to modify g-CALIB-S such that the
names of these variables no longer need to be fixed. It will give the user more flexibility since s/he
then can choose more easily a calibration stratum variable, a sampling weight variable, ... from the
input file.
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Applications at Statistics Belgium



— 90 -



V.A REGISTERS AND FRAMES

The power of calibration depends to a large extent on the amount and quality of auxiliary information
that is available, hence on external sources of different kinds. It is beyond the scope of this study to
discuss the external sources used in the applications hereafter. More work definitely has to be done at
Statistics Belgium to set up a good system of databases where good calibration benchmarks and
“individual” information can be found, or to make existing sources more readily available for that
purpose.

For household and individual surveys, the main source is the National Register of Physical Persons. A
reduced version of this register is available to the methodological department for sampling and
estimation. From this register we have derived a household frame. So far we have used only household
characteristics such as the number of members, place of residence, and characteristics copied from the
reference person (RP) of the household, i.e. its age (in 5-year age classes) and professiona status. In
the future, we will try to describe the structure of the household in some more detail. So it may be
interesting to distinguish 1-parent households from traditional 2-parent ones, households without
children from households with children, etc. The National Register contains enough information to
derive that kind of household characteristics.

We have also prepared now for linking the National Register, or a derived household frame, with a
frame of fiscal households. This is an attempt to get indicative information on income at the level of
administrative households.

For business surveys, the main source of information is DBRIS, the Banque de Données des
Redevables de I’ Information Statistique. More about this integrated database is told in section V.G,
where an application of calibration to the Structural Business Survey is discussed. Linkage of this
database with data from social security servicesis established.
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V.B CALIBRATION OF THE LABOUR FORCE SURVEY (LFS)

V.B.1 I ntroduction

The Labour Force Survey (LFS) deserves special attention in this study, sinceit is used as a reference
for calibration of several, if not all, household-based surveys at Statistics Belgium: the Household
Budget Survey (HBS), the Time Use Survey (TUS), the Travel Survey (TS). Moreover, external users
often demand results from the LFS, hence the need for careful extrapolation of this survey. On the
other hand, we'll see in section V.F that LFS estimates on labour volume can be adjusted in turn to
meet some relative distribution of labour volume by branch of industry from the national accounts
(NA). This leads us to the more advanced problem of mutual consistency between results from
different surveys, which can be solved generally by repeated calibration.

The initial sample for the LFS is quite large (about 110,000 individuals, or 48,000 households), and
participation of selected households and individuals is compulsory, such that very reliable estimates
can be obtained, provided that care is taken in all phases of the survey process: starting from sampling
design, via collection and coding, editing and imputation, to calibration, estimation and evaluation.
Obvioudly in the present study, we mainly focus on calibration (and estimation). However, as it is
important to be aware of the sampling design in calibration too, we also reserve some space for a brief
discussion of the design of the LFS.

The sampling design is quite complex, as it will be explained in section V.B.2. Thisimplies that it is
not straightforward to calculate first and second order inclusion probabilities, for households and
individuals, which are required to derive sampling weights and to perform variance estimation in the
context of generalised calibration (section 111.G). We mention briefly a mathematical model in order to
calculate (approximate) first and second order inclusion probabilities.

Currently, calibration of the LFS seems to ignore the sampling design, at least to some extent.
Extrapolation is smply complete post-stratification of individuals, more details are given in section
V.B.3. We there comment also on the (possible) effects of ignoring sampling weights in post-
stratification. We have not done any numerical comparison yet, since this would take quite some time,
and since data files used for calibration should be carefully constructed and well understood. The latter
is beyond the author’ s capabilities at present, since heis just a methodologist (and he likes that!), and
not at all a subject matter statistician with regardsto the LFS (which he would not like to be!). In other
words, we need a more thorough analysis of the LFS on its own, which will be the topic of another

paper.

We will see later that estimates from the LFS are used as benchmarks for calibration of several other
surveys,; household characteristics are sometimes used as calibration variables, while at other instances
individual characteristics would be more convenient. The LFS should therefore provide precise
estimates both on the household and on the individual level. As an example: the total and regiona
sizes of the Belgian population of individuals should be accurately estimated — as sums of calibrated
individual weights for sampled (and responding) individuals— as well as total and regional sizes of the
Belgian population of (private) households — as sums of calibrated household weights for sampled
(and responding) households. As we will see in section V.B.3, current post-stratification is using
individual characteristics only, and household weights are obtained as averages of individual weights
for members of the household. So, one can argue against the appropriateness and precision of totals of
household variables. We can do better, through simultaneous calibration of household and individual
characteristics, using, henceforth, calibration (or reference) totals for households as well as for
individuals. The methodology to achieve this is explained in section V.B.4. An attempt has already
been made, but the techniques are not yet implemented in the production process.
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We have not reproduced weights for the LFS in this text, since that would not contribute to the
completeness of this text. However, estimates from the LFS are used in various other case studies in
this report, which justifies at least a brief discussion of the LFS.

V.B.2 The sampling design

We now present briefly the sampling design. The purpose is to show how sampling weights can be
calculated for this survey, which is based on a complex sampling design. Notice that the LFS has been
restructured since 1999. One of its main features is that it became a rotational survey. | will not give
numerical values of the sampling design parametersin this report.

First of al, the Belgian population (of private households) is geographically stratified according to the
10 administrative provinces and the Brussels Metropolitan Area. A frame of households is derived
from the National Register of Belgian citizens.

In the first stage of the sampling procedure (within each stratum separately), sections are drawn
according to a probability proportional to size (PPS) sampling scheme. “ Sections” are parts of current
communities (denoted c), but larger than the frequently used statistical sections. The size measure
used is the number of households in section c. The total number of times a section c is selected is
fixed, and PPS sampling is with replacement. A list-sequential scheme is applied. However, it can be
argued that an assumption of multinomial PPS sampling adequately approximates the sequential
scheme. Such a mathematical model is easier to handle, and ultimately provides a(n) (approximate)
formulafor calculating 2"™-order inclusion probabilities too (based on a generalisation of formula 3.8.3
in Sérndal et al (1992)), although we do not discuss this further in detail in thisreport. To each draw of
a section corresponds a fixed number (depending on stratum) of households to be selected. Notice that
sections are in fact PSUs (primary sampling units) in multi-stage cluster sampling of individuals.

Next, the “sample of sections’ (taking into account their multiplicities) is spread “uniformly” over 12
trimesters (3 years). The procedure is such that (1°) approximately the same number of households
will be drawn and contacted in each trimester, and (2°) the number of households drawn in each
trimester is (approximately) fixed. While sections are drawn for a 3-year period, households in
selected sections are drawn each year, using the most recent version of the National Register. Some
realistic assumptions result in the fact that allocation of sections to trimesters does not have to be made
explicit in formulae for inclusion probabilities.

Within each selected section, we then draw completely at random (i.e. according to SRS) the (random)
number of households that has to be selected. Hence sampling of households is a two-stage cluster
sampling design within strata. It is therefore relatively easy to obtain (approximate) 1% and 2™-order
inclusion probabilities for households. The 1%-order probabilities, and hence the corresponding
sampling weights, do only depend on the total (fixed) number of households to be selected in a given
stratum and on the total number of households in the stratum. Hence the sampling design is self-
weighting within the 11 geographical strata.

Since all individuals (above 15 years old) in a selected household are interviewed, sampling weights
for individuals equal sampling weights of the household to which they belong.

Non-response rates are low for the LFS, because of the compulsory character of the survey. This
makes the LFS an interesting survey for a thorough study of calibration techniques, since calibration
then amost only corrects for sampling error, for which it has initially been developed, and since there
is only limited disturbance due to non-response (given that other non-sampling errors also have a
small impact).
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V.B.3 Current calibration: post-stratification of individuals

Currently, extrapolation of the LFS is a complete post-stratification technique. Sampling weights can
be ignored, since post-strata are subsets of sampling strata: see section 111.B.1 and the remarks on the
sampling design for the LFS in the previous sub-section.

Calibration, i.e. post-stratification, is at individual level, not at household level. Individuals are post-
stratified by 4 variables:

= Gender;

» Age, grouped in 16 classes (0-4 yrs, 4-9, ..., 70-74, 75+);

= The geographical stratification variable used in the sampling design (11 categories);

= Reference period, i.e. the trimester for which a household has been sel ected.
No cell in the resulting four-way classification is empty or considered to be too small, so there was no
need to regroup some of the 1408 cells (for one survey year). Calibration totals are obtained from the
National Register.

After calculating post-stratification weights for (sampled, and responding) individuals (including
children of less than 15 years old that are in the selected households), calibration weights for
households are obtained by averaging the weights of the members of the household. This approach has
not been justified in any of the previous sections in this report. | strongly recommend a thorough
comparison of this technique with the techniques discussed in sections I11.D-E, in particular the
technigue of imposing equality of g-weights within clusters (households), if calibration is on
individual characteristics.

V.B.4 Suggestion: calibration on both individual and household characteristics

The LFS data clearly provide a rich basis for the development of a sophisticated weighting scheme,
taking individual as well as household variables into account. Hence we have a perfect situation for
comparison of different calibration techniques, as outlined in section I11.E. The ultimate goal of amore
sophisticated calibration strategy is not its complexity, but its efficiency, such that reliability of
estimates, which will be used as calibration totals for other surveys, is assured, and such that
numerical consistency of estimates across different surveys is improved. Notice that one of the
purposes of generalised calibration, other than simple compl ete post-stratification, is to obtain stahility
of g-weights and calibrated weights (and estimates based on these). Of course, post-stratification is not
necessarily doomed a priori to be of bad quality, especialy not for such alarge respondent sample.

A study of calibration of the LFS should start with a complete overview of the different uses of the
results of the LFS. Notice that the type of variables for which totals have to be estimated, has an
impact on the calibration model that might be chosen. Also, the various external sources that are
available should be investigated further, and new sourcesis being looked after.
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V.C CALIBRATION OF THE HOUSEHOLD BUDGET SURVEY (HBS)
V.C1l I ntroduction

In this section we focus on the Household Budget Survey (HBS). Our main purpose here is to
summarise the basic principles of the sampling design, and the way to incorporate the design in up-
weighting schemes. We do not intend to repeat the calculations for the weights for the HBS, but a
discussion of present practice isinteresting for at least two reasons: (1°) to show how the nature of the
study variables has to be considered when a weighting scheme is set up; (2°) to prepare for a more
extensive numerical illustration of weighting for the Time Use Survey (TUS) in section V.D.

A study of calibration models for the HBS is important to be considered, since the HBS has many
users. One of them is the service for calculation of the consumer price index (CPI). We do not have to
deliver the weights to this service, but consideration of the needs for the CPl may shed light on the
quality of the data that are collected in the HBS. This, together with lessons drawn from a study of
calibration, may give indications about possible needs for improvement of the HBS.

The HBS has been reorganised in 1999. Since then it is a continuous survey. The burden for sampled
households and individuals has been reduced: they now have to record details about their expenses
during 1 month (the reference month) in a household or individual diary, while an additional
guestionnaire retrospectively collects information on expenses that cannot be covered by the diaries.
This questionnaire asks for information on expenses during a period of 4 months: the reference month
and the 3 preceding months. This allows detecting and covering expenses with some larger periodicity
(e.g. insurance payments, rent for housing, etc), or expenses with an occasional character (e.g. buying
acar, travel expenses, etc).

The reformed HBS actually started in November and December 1998, as a pilot survey (e.g. to get an
idea about response rates). The data for these two months could be incorporated in the results. In this
text, however, we ignore the data collected on households for which the reference month is either
November or December 1998.

Response rates are very low for the HBS (less than 10%). A discussion of generalised calibration of
the HBS therefore should focus on its potential to correct for non-response. Calibration models should
incorporate (non-) response models, or, alternatively, an integrated system of response modelling to
correct for differential non-response and calibration modelling to reduce sampling error should be
studied. Variance estimation is an important issue in that context. This, however, is beyond the scope
of thistext. Here (and in section V.D) we use calibration as a method for simultaneous adjustment for
non-response (a source of non-sampling error) and sampling error.

V.C2 The sampling design, and Phase | inclusion probabilities

The sampling design for the HBS is very complex. It is a multi-phase design, of which a very brief
(and certainly incomplete) discussion is presented here. Our main interest is to show how first-order
inclusion probabilities, and hence sampling weights, can be calculated. These will be incorporated as
initial weightsin generalised calibration for the TUS in section V.D. The TUS isin fact a continuation
of the HBS: responding households (for the HBS) are invited to participate in the TUS too. Therefore,
the sampling design for the HBS only needs to be extended by one more phase (Phase IV here below),
in order to cover the entire sampling procedure for the TUS. That is why this section also covers the
TUS.
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Three phases can be considered in the sampling procedure for the HBS; a 4™ phaseis to be considered
for the TUS. However, a preliminary step in fact is the geographical stratification of the population
(of households or individuals). The strata are the three regions Brussels Metropolitan Area, Flanders
and Wallonie; they are numbered h = 1, 2, 3, respectively. Experience has shown that response is
lower, for instance, in Brussels. Hence initial sampling fractions are higher for this stratum. Given this
stratification, the following multi-phase procedure (within each stratum) is designed.

Phasel|

2-stage sampling of households (within each region h)

Stagel.1 Probability proportional to size (PPS) sampling of communities c

* We draw n,, times, with replacement (WR), a community in region h. n,, is fixed a priori.

N, Will denote the number of times community hc has been selected; this number is random.
Notice that n,, = Z N, Which is fixed.

clsy,

* The size measure used is the number M, of householdsin community hc (i.e. community cin

stratum h).

Stagel.2 Stratified simple random sampling (STR-SRS) of households in selected

communities

« Theinitial (random) sample sizeis m,, = n,.G,, in a selected community hc, where G, isa

Phase |

fixed “group” size depending only on region h. Groups are sets of households, to be assigned
to the same interviewer. G, islarger for Brussels (h = 1) then for the other two strata, because
of higher non-responsein Brussels.

The stratification variable is household size, with categories 1, 2, 3, 4 and 5+ (numbered k = 1,
..., D).

Per “group”, with size G, , of households to be selected, the allocation to the strata k is fixed;

let G, be the number of households to be selected per group in stratum k, with G, = Z Gy
k
Then, there will finaly be m =n, G, households selected in stratum k in selected
community hc, and m, = zchk- G, is relatively larger for k = 1, since 1-person
k
households tend to have lower response rates than others.

A response mechanism reduces the initial household samplesto respondent samples

Let ., be the number of responding households, among the m,, initially selected in Phase
l.

The response probability for household i in stratum k in community hc is denoted 6, ;. Then
M /M 1S the observed value for 6,;, which is actually very small (less then 10%). A
response model might be used to smooth observed response probabilities.

Phaselll Occasionally, the size of the respondent samplesislimited.

Hence the respondent samples are reduced, in order not to exceed a maximum number of
respondents per group. The main purpose of this additional step is to assure that different
interviewers will have more or less the same workload per group of households they have
been assigned to. (It'saway to simplify payment of interviewers.)

The maximum number of respondents per group is set to g,,, depending only on region h, so
that the maximum number of households interviewed in a selected community hcis n,.q,.
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» Thesizes of the final respondent samples (within communities hc) per stratum k are i, .

PhaselV A second response mechanism reduces the final samples for the HBS to final TUS
samples

+ Let m, bethesizesof thefinal TUS respondent samples.

© My /My is an observed dropout rate, measuring willingness of households having

participated in the HBS, to continue participation in the TUS. A dropout model might be used
to smooth observed dropout rates.

It further has to be noticed that sampled households are allocated to a particular month, which is called
the reference month for that household. We do not discuss this property of the sampling design, and its
consequences, in detail in the present text. For calibration purposes we assume that households
allocated to different non-overlapping time periods (reference months, trimesters (as a series of three
reference months), etc) are elements of independent samples.

Assuming proper or multinomial PPS sampling in Phase | (see also section V.B), it is possible to
derive manageable (approximate) formulae for 1% (and 2™) order inclusion probabilities, and hence for
sampling weights, corresponding to Phase |. The result is the following 1% order inclusion probability
for ahousehold i in (household size) stratum k in community hc :

_ My I“Ih
T =——— V.1

where M, is the number of households in stratum k in community hc, M, = Z M, isthe

number of households in community hc, M, = Z M,. is the total number of households in

stratum h, and m,. is the number of sampled households in community hc (see Phase |, Stage
.2 here before). We can distinguish between a calculated value for m,., and an actual value.

The former are following from the above reasoning, and are based on predetermined group sizes; the
|latter are obtained simply by counting from the sample. | recommend using the actual values when 1%
order inclusion probabilities have to be calculated and used as initial weightsin calibration.

The Phase | sampling weights for households are then calculated from:

_ M M
d = 158, =M My (v.2)
g My My

for any household i in (household size) stratum k in community hc. The numbers M, , M, and M,

are obtained from a frame of households, which is derived from the Belgian National Register of
individuals. This sampling weight is also valid for any member of household i, since all household
members all interviewed for the HBS (and TUS).

One could construct response or dropout models, to include additional corrections in these sampling
weights. Our choice however is to use the above Phase | sampling weights as initial weights in
generalised calibration. Consequently, generalised calibration is intended to correct for non-response
aswell asfor sampling error.
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A model-based study (using logit modelling, for instance) of non-response for the HBS (and dropout
for the TUS) would be very useful, since it could give indications about the auxiliary variables to be
included in a calibration model that has to correct for non-response. This, however, is not atopic for
the present study.

V.C.3 Current post-stratification, and suggested generalised calibration

Current extrapolation for the HBS is still based on a traditional post-stratification technique. Post-
stratification for households is based on the following post-stratification variables:

The geographical stratification variable used in the sampling design (3 categories);

The size of the household (categories 1, 2, 3, 4+), also used in the sampling design;

The number of active personsin the household (categories 0-1, 2+);

Age of RP, combined with professional status of RP (categories employed, self-employed,
non-active <60 yrs old, non-active 60-69 yrs old, non-active 70+ yrs old);

= Reference period, e.g. the month or trimester for which a household has been selected.

A complete cross-classification by these variables is not possible: there are too many cells, given that
only 3,745 households have agreed to participate in the HBS in 1999. Hence, many cells had to be
regrouped.

Estimation of totals has to be carried out for several types of variables (at household level here only),
e.g.

= Monthly expenditure variablesy and y; , with observed values y; = expenditure by household

i initsreference month, and y;; = expenditure in month j by household i;

* Quarterly expenditure variables q and q;, with observed values g, = expenditure by

household i in the 4-month period (j—3, j), where j is the reference month of household i, and
g; = expenditure in month j by household i, which is not directly observed, but derived

from an observed expenditure covering 4 months.

Other periodicities are possible, but considering this here would not contribute to the present
discussion. The above variables could also be replaced with a corresponding set of indicator variables,
indicating whether there was a strictly positive expenditure or not (for a given period).

If the 12 sub-samples, corresponding to 12 reference months, are treated as being independent, then

extrapolation can be done for each month separately, and a total estimated expenditure for the survey

year and for the entire population (possibly restricted to a geographical stratum, or to another domain

of interest) would be calculated from T, = zfyj = z zwjiyji = z z W, Y, , where the summation
] I T

with index i is over households with reference month j. (Notice that, in fact, 12 variables y; are

reduced to one variable y.) Stated in terms of generalised calibration methodology, it follows that, for

each month j, a set of calibrated weights w; =(w; ) or g-weights ; =(;) for households with

reference month j has to be found, based on a calibration model {min d,G(g;):Z]D,g, = s}, where

d; isavector of initial weights for households with reference month j, Z; is an appropriate design

matrix, based on households with reference month j and household level auxiliary information, and s
is a corresponding vector of calibration totals (which does not depend on reference month!). See
section I11.E.3 for aderivation of this calibration model. The same calibration results can aso be used
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to estimate the population tota (for the entire survey vyear) for g-variables:

fq = ZTqu =Zzwjiqji :%Z ZWini =Z ijiqi* , where ¢ =4G .
7 i i i

] ] ]

Alternatively, calibration (or post-stratification in particular) can be done independently for each
trimester, using all households with reference month in the trimester considered. Replacing subscript j
with subscript t, and introducing notation referring to trimesters instead of months, it will be clear that,
within the generalised calibration framework, we then consider a calibration model

{mind,G(5,);Z{D,g, =s} for each trimester t. Notice that the vector s of calibration totals has not

changed. Moreover, time (e.g. month j) can be reintroduced as a calibration stratum variable; the same
vector s is then repeated for each calibration stratum. Let w; be a solution to

{mind,G(G,);Z{D,§ =s}, t = 1, ..., 4 The above-mentioned estimators T, and T, will then be
replaced with estimators T, = wy, and T, = W, g , respectively, with g =iq as

SIS 4
before.

Currently, extrapolation is done for each trimester separately, as explained in the previous paragraph.
The extrapolation coefficients thus obtained are transmitted to Eurostat, together with the observed
(edited) data. The calibrated weights are considered to be stable.

The advantage of a period-based calibration method (i.e. to use time as a calibration stratification) is
that period-specific estimates are obtained. Provided that these are precise, they might be used to study
trends in expenditure, and to detect possible seasonal effects.

A comparative study of weighting schemes for the HBS has to be carried out. Notice that here
too two-level calibration can be considered. Moreover, it follows from the continuity of the sample
that time will be an important calibration variable (possibly the calibration stratum variable), as
explained in the previous paragraphs.

Current post-stratification techniques have to be compared with alternative calibration
technigues. By the way, post-stratification as outlined in the beginning of this sub-section can, strictly
speaking, not be justified, given the general discussion in section 111.B.1. Indeed, it follows from
formula (V.2) for the Phase | sampling weights that the sampling design is not self-weighting within
post-strata: these sampling weights do depend on community c, while that level of geographical
stratification is not appearing in the above list of post-stratification variables. We will have to
investigate this further in order to understand possible effects of post-stratification in a situation where
application of post-stratification is theoretically not allowed.

V.C4 Calculation of Phase | sampling weights

This section V.C is closed with some further comments and results with respect to the calculation of
Phase | 1% order inclusion probabilities and sampling weights.

As mentioned before, we have not used the pilot survey data carried out in November and December
1998, but only data from households with reference month in 1999. The weights are at household
level, and therefore also valid at individual level, although no individual auxiliary datais used. Actua
sample sizes m,, (see section V.C.2) are thus obtained from the 1999 initial HBS sample. Population
counts of households, i.e. M,,, M,. and M, , are obtained from a frame of households, derived

from the National Register of individuals. The 1998 register has been used, since sampling was aso
based on this register. Two series of sampling weights have been calculated: the “calculated” series
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based on calculated values for the sample sizes m),., and the “actual” series based on the sampleitself.

A graphical comparison has revealed that the two series are very close to each other. This is aso
reflected in the table here below. After calculating the two series of weights and assigning the right
pair of weights to each sampled household, it is possible to estimate the number of households per
region (stratum) as the sum of the sampling weights for households within the region. “Valid N” refers
to the number of householdsin theinitial sample.

Table5.1 Estimated numbers of households, based on two series of Phase | sampling

weights, by region and by reference month

Phase | sampling Phase | sampling
weights with weights with
ACTUAL| CALCULATED
sample size sample sizg
Sum Sumy ValidN
Region Brus-Brux 469,830.3 476,188.4 14,664
Vlaanderen 2,369,250.2 2,419,729.4 26,813
Wallonie 1,367,248.8 1,396,778.20 19,981
Table Total 4,206,329.3 4,292,696.4 61,458
Reference month 1 440,797.6 453,879.1 5,569
2 328,153.9 335,932.2 4,664
3 339,771.9 347,040.9 5,074
4 344,016.9 350,714.0 5,131
5 345,287.6 352,191.6 5,102
6 343,612.2 350,522.0 5,131
7 348,455.3 354,942.2 5,131
8 342,241.1 348,223.3 5,131
9 345,362.9 350,951.2 5,132
10 341,117.4 348,223.3 5,131
11 343,563.1 349,890.6 5,131
12 343,949.4 350,185.9 5,131
Table Total 4,206,329.3 4,292,696.4 61,458

The numbers of households in the 1998 sampling frame, per region, are: 467,860 for Brus-Brux,
2,353,864 for Vlaanderen and 1,356,956 for Wallonie. Both series of sampling weights are over-
estimating the frame-based counts of households in the 3 regions. However, the series of weights
based on actual sample sizes provides less over-estimating values, and, more importantly, provides a
relative distribution of households across regions, which is closer to the frame-based one. Over-
estimation of absolute counts is not that important, provided the relative bias is similar in different
sub-populations. Further calibration will automatically adjust such abias.

No further numerical results have been obtained for the HBS, since the respondents sample (of
households) was not available to me at the moment of dealing with this survey in the context of
writing this text on calibration. Notice, however, that the respondent sample for the HBS is close to the
respondent sample for the TUS. The latter has been explored extensively, asit will be demonstrated in
the next section.
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V.D CALIBRATION FOR THE TIME USE SURVEY (TUS)
Vv.D.1 I ntroduction — Preparing input filesfor g-CALIB-S

The Time Use Survey (TUS) 1999 has been organised as a continuation of the HBS 1999. Details
about the sampling design, non-response problems, and general issues on calibration, together with
some more background information on this survey may therefore be found in section V.C on the HBS
1999.

In the next sub-sections, we will use the Phase | sampling weights, discussed at length in section V.C,
as initial weights for calibration of the TUS. It is not the purpose of the present study to examine in
detail the different weighting schemes that will be obtained, nor to provide a comparison. Rather this
text isfocussing on technical aspects of calibration. One important issue in thisreport is that, based on
the TUS 1999, an illustration is given of the two-level simultaneous calibration technique discussed in
section I11.E, as well as of the related basic and derived techniques for one-level calibration (e.g. the
clustering technique in sections 111.D and IlIl.E.4). Thus, the TUS is used to illustrate how
sophisticated calibration tools could be used to find optimal calibration weights for, for instance, the
LFS (see section V.B.4), and obviously also for other household-based surveys, and, why not,
probably also for business surveys.

The TUS is being analysed by specialists at the Vrije Universiteit Brussel, i.e. by Prof. Dr. I. Glorieux
and his assistant Ms. J. Vandeweyer. Several discussions of up-weighting of the TUS have already
taken place between those people and myself. | have tried to incorporate their ideas and their wishesin
the present study. However, this work is not completely finished yet. The main purpose of my own
work on calibration so far is to provide the tools (SPSS syntax programs), not only for calibration,
given the required input files are ready, but also to construct these input files from various other
sources. A lot of time has in fact been spent on bringing different files together. More work has to be
done, but | believe a good starting point has now been reached, making creation of input files for
calibration more easy, more reliable, and faster, in the future.

Consequently, we do not much concentrate on numerical results in this section, but more on the
procedures to obtain those results. Numerical results shown hereafter should therefore primarily be
considered asiillustrations of generalised calibration methodology.

A syntax program (PREPARE_TUSDATA.sav) that prepares the basic TUS data for different types of
calibration is presented in appendix VII1.B.1; output files from this syntax program are: TUS99-XD
DATA.sav, TUS99-HD DATA.sav, TUS99-ZD DATA.sav and TUS99-VD DATA.sav. The program is still
a bit messy, but can be a good starting point for future refinements and improvement of the survey
data files that will be used as input files for calibration. The program itself provides an outline of the
steps that have been, and that will always have to be taken to prepare the required files. No further
discussion isincluded at this place; the interested reader can have alook at the syntax for more details.
A guide to understand more easily the data transformation procedures is the summary table 3.8 in
section |11.E.6. One lesson can be drawn from this: more work has to be done with respect to
preparation of basic files, and integration of variousfilesinto a single (application-specific) system.

Section 2 in PREPARE_TUSDATA.sav shows that the calibration strata (in the variable STRATUM, see
section 1V.B.3) are the three geographical regions Brus-Brux, Vlaanderen and Wallonie. We have
aggregated the above mentioned data files by STRATUM. The aggregated files are useful in two
ways:. (1°) a zero sample total (per calibration stratum) for a particular calibration indicates that this
variable should be omitted from the data files, or at least not be included in the calibration variable list
@XVARS; (2°) the sample totals for these calibration variables can be replaced with the
corresponding (estimated) population totals, i.e. the calibration totals. The latter is exactly what we
have done to prepare the calibration totals files; the way to do this was quasi manually; calibration
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totals are estimates from the 1999 LFS. The resulting files are called TUS99-XD TOTALS t.sav,
TUS99-HD TOTALSt.sav, TUS99-ZD TOTALS s.sav and TUS99-VD TOTALS u.sav. Notice the similarity
between the names of the 8 files that have been prepared, and the matrix notation in section I11.E
(especidly intable 3.8 in section I11.E.6).

We are then ready to apply different calibration models to each pair of data files, e.g. TUS99-XD
DATA.sav and TUS99-XD TOTALS t.sav. The content of each pair of files is briefly discussed in the
next sub-sections V.D.2.i-iv, although the calibration variables actually used are not our main concern
in this study. Further research may result in the incorporation of other calibration variables.

Vv.D.2 One-level and two-level calibration of the TUS

V.D.2.i Individual-level calibration using type (X,d,t) data

Three original qualitative variables, representing individual characteristics of responding people in the
1999 TUS, are transformed into calibration variables (i.e. indicator variables):

=  Gender (male, female; calibration variables: S1, S2);

= Age (<30, 30-39, 40-49, 50-59, 60-69, 70+; calibration variables: A1 to A6);

= Education (LO or unknown, LMO, HMO/VS, HOBU, UNI; calibration variables: E1 to
E5).

Hence, we have variables S1, S2, A1 to A6 and E1 to E5 in TUS99-XD DATA.sav and TUS99-XD
TOTALS t.sav; a constant variable X0 is included too, as usua. The calibration stratum variable
STRATUM distinguishes the three major Belgian regions, as mentioned already; the file TUS99-XD
DATA.sav includes a variable PROV, which can be used as an aternative calibration stratification
variable (PROV should then be renamed as STRATUM,; the file TUS99-XD TOTALSt.sav then hasto
be redefined appropriately). The initial weight variable WEIGHT contains the Phase | sampling
weights (based on actual counts m,., as discussed in section V.C; the series based on calculated m,, is
stored too in the survey data file). A household identification variable (CLUSTER) is present in
TUS99-XD DATA.sav, but is not used here.

Two calibration models {min dTG(g); X"Dg=t,g @ B} have been applied: the linear method and

the multiplicative method, both with model formula 1 + Gender + Age + Education. Notice that the
linear method will then produce g-weights that are additive in the calibration variables, while the
multiplicative method produces g-weights that are additive in the calibration variables on a
logarithmic scale. The scale parameter is always estimated from the data, using the constant variable
X0; the g-weights are with respect to the scaled weights. The two series of g-weights are shown in
figure 5.1. With the multiplicative method, the g-weights are less distributed, and there are less
extreme values, at least for stratum 2 (Vlaanderen). A practical advantage of the g-weights under the
multiplicative method is that are all positive. This truncation from below is partly responsible for the
smaller dispersion in the g-weights too.
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Fig5.1 Comparison of 2 series of g-weights fromindividual-level calibration of
TUS 1999 data, both with model formula 1 + Gender + Age + Education
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The survey data file TUS99-XD DATA.sav can easily be merged with the two output files (both called
WEIGHTS.sav at exit of g-CALIB-S, but renamed immediately), since all files are sorted by CASE on
exit of g-CALIB-S. This allows constructing various scatter diagrams, plotting the series of weights
(G_WEIG for the linear method, and G_WEIG2 for the multiplicative method) against each other. A
simple scatter diagram isin figure 5.2. Calibration variables can be used to constructs separate scatter
diagram for different subpopulations. This might help to identify the “clusters’ that appear to be
present in figure 5.2. Obviously, many other data exploration techniques may be used to try to
understand the data and the calibration results. This, however, is not the purpose of the present text.

Fig5.2 Comparison of 2 series of g-weights fromindividual-level
calibration of TUS 1999 data, both with model formula
1 + Gender + Age + Education, by means of a scatter diagram
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V.D.2ii  Clustering: individual-level calibration using type (H,d",t) data

With the approach of the previous section, individuals belonging to the same household have different
g-weights and calibrated weights, because they generaly have different individual characteristics. In
this section we impose the same estimated weight for individuals in the same household, irrespective
of their individual characteristics. The clustering technique is applied to that end (section I11.E.4).

Hence, we have to solve calibration models of the type {min d*"G(g); H'D*'g=t,§ DﬁB}. Recall

that the elements of the design matrix are averages of individual values within households; see table
3.8insectionlll.E.6.

We have again tried the linear and the multiplicative method, with model formula 1 + Gender + Age +
Education, as in the previous section. The results are in figure 5.3. The linear method still results into
negative weights. The multiplicative method now gives quite extreme g-weights, compared with the
results in the previous section. We therefore tried to restrict the g-weights even more, by using the
logit method. Unfortunately, the method to find extreme lower and upper bounds (section I1.C) has not
been implemented yet. Some trial and error resulted into acceptable results for the logit method with
lower bound of 0.0 and upper bound of 8.0. The results are also shown in figure 5.3.

Fig5.3 Comparison of 3 series of g-weights fromindividual-level calibration of TUS
1999 data, all with model formula 1 + Gender + Age + Education, using
clustering to impose equal g-weights within households
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V.D.2iii  Household-level calibration using type (Z,d,s) data

Household characteristics used for calibration at household-level are;

=  Household size, or HHsize (1, 2, 3, 4, 5+; calibration variables ZS1 to ZSb);

= Ageof RP, or RPage (<30, 30-39, 40-49, 50-59, 60-69, 70+; calibration variables: ZA1to
ZA6);

= Education of RP, or RPeduc (LO or unknown, LMO, HMO/VS, HOBU, UNI; calibration
variables: ZE1 to ZEb).

Calibration variables in TUS99-ZD DATA.sav and TUS99-ZD TOTALS s.sav are: ZXO0, ZS1 to ZS5,
ZA1 to ZA6 and ZE1 to ZE5; no variables representing joint effects of the above three variables are
constructed. Again geographical stratification isin STRATUM,; initial Phase | sampling weightsarein
WEIGHT; and some more variables are present in TUS99-ZD DATA.sav, such as PROV and MONTH
which could both be used to define calibration strata (or calibration variables).

The calibration models being applied are of the form {min aTG(g); ZTBQ‘ =s,0 @ B} . The linear,

the multiplicative and the linear truncated method have been applied. The bounds in the latter method
were L = 0.01 and U = 5.0. The model formulain all three models was 1 + HHsize + RPage; RPeduc
had to be omitted because of missing values for the corresponding calibration variables. The
distributions of the resulting series of g-weights are shown in figure 5.4.

The linear method again results into negative weights, which is undesirable. The multiplicative
method has apparently given bad results. there are (surprisingly) many extreme g-weights, which was
already seen in the previous section, but which is here even more striking. Surprisingly, the truncated
linear method allowed restricting the range of g-weights to the interval [0.01, 5.0]. It can also be
noticed that convergence of the truncated linear method was very slow: respectively 24, 38 and 34
iterations were needed for calibration strata (regions) 1 to 3.

The logit method with g-weight range [0.01, 5.0], failed for stratum 1, but converged in only 6

iterations for strata 2 and 3. The results are not that much different from those resulting from the
truncated linear method (strata 2 and 3).

Fig5.4 Comparison of 3 series of g-weights from household-level calibration of TUS
1999 data, all with model formula 1 + HHsize + RPage
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Truncated linear method with L =0.01and U =5.0
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V.D.2iv  Smultaneous two-level calibration using type (V,d,u) data

Finally, calibration in this section is using both individual-level and household-level auxiliary
information. The calibration variables are, combining the situations in the previous three sub-sections:
the constant variable ZX0, HHsize indicators ZS1 to ZS5, RP's age indicators ZA1 to ZA6, and
variables X0, S1 to S2, Al to A6, and E1 to E6, which are similar to the variables with the same
names in sections V.D.2.i-ii, but instead of being indicator variables (for individuals) they are now
counting the number of household members in the corresponding categories of the underlying
gualitative calibration variables. The calibration models applied in this section are of the form
T

~ ~ S ~
{min d'G(9); (ﬁT]Dg‘ = (tj g DQB} ; see also table 3.8 for more details, and for comparison with
the methods of the previous sections.

Henceforth, we are now ready to calibrate on individual and household information simultaneously.
We start with the linear method and model formula 1 + HHsize + RPage + X0 + Gender +Age +
Education. (We cannot write 1 for X0, since the term considered is the number of members for each
household; Gender, Age and Education have an similarly modified interpretation, as already stated in

the preceding paragraph. This, actualy, is the difference between design matrices H and H; seetable
3.8.) Figure 5.5 shows the results. These are clearly not useful, as there are too many negative g-
weights (and calibrated weights).

Several alternative models can be tried, in order to improve the pattern of estimated g-weights in
figure 5.5. Of course, there are the multiplicative, the logit and the truncated linear method to force
positive estimates for weights. But other model formulae too may work in finding weighting schemes
with less negative weights. Figure 5.6 shows the estimated g-weights corresponding to 4 calibration
models, all with model formula 1 + HHsize + X0 + Gender. Thisis done for illustration here; no other
argument justifies these calibration models. Again slower convergence of the truncated linear method
for stratum 1 may be notified.
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Fig5.5 g-Weights fromtwo-level calibration of TUS 1999 data, using
the linear method with model formula
1 + HHsize + RPage + X0 + Gender +Age + Education
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The model formula 1 + HHsize + X0 + Gender has reduced auxiliary information to 1 household
characteristic and 1 individual characteristic. Obviously, only household characteristics, or only
individual characteristics could be used within the same two-level calibration framework. If only
household characteristics are used, the results will be exactly as in section V.D.2.iii. On the other
hand, if only individual characteristics would be used, then we would not get the same results as in
section V.D.2.ii. Thisistrue because the objective function in the mathematical programming problem
is different: the weights in the weighted sum of distance measures are different in the two approaches;
the calibration constraints however are equivalent. Results are not presented here to illustrate these
features.
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Fig5.6 Comparison of 4 series of g-weights from two-level calibration of TUS 1999
data, all with model formula 1 + HHsize + X0 + Gender
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V.E CALIBRATION OF THE TRAVEL SURVEY (TS)
V.E.1 I ntroduction

We can use the Travel SQurvey (TS) 2000 to illustrate not only the efficiency of g-CALIB-S, but also
several other aspectsrelated to calibration. It is clear that an extensive calibration study for this survey
can be carried out, similar to what has been initiated here before for the Time Use Survey (TUS).
Indeed, data and tools are now ready to try out one-level and two-level calibration, using many
individual-level and household-level characteristics. This, however, is not what will be focussed on in
the next sub-sections.

During the last 12 months, other aspects of the TS have been investigated, and alot of time and energy
has been put in establishing an integrated system to process this survey. This work is not finished yet,
but advantage can be already taken now from at |east two features of thisintegrated system:

=  When the sample is designed, sampling information such as stratification variables and
sampling fractions are stored in a systematic way in SPSS data files; the definition of stratais
archived in SPSS syntax files.

= A text file contains enough information for all sampled individuals and households about
their willingness to participate, and effective participation, in the TS, together with basic
characteristics, asked for in the questionnaire. This file is available at any time, once data
collection and data coding have started. Its name for the 2™ trimester is
t.i11.B23A.T7T0002.D071200.

In the next sub-section we will see that a sample of households is selected for each trimester. In this
study we restrict ourselves to calibration for the 2™ trimester. We will illustrate how the input files for
g-CALIB-S can efficiently be prepared, taking full advantage of the above mentioned features of the
current survey process for the TS at Statistics Belgium. Calibration itself, and discussion of results
from different calibration models, is limited for this survey; we want to stress the fact that a lot of
flexibility (with respect to calibration) is reached once an efficient integrated systemis set up.

One thing that is currently still slowing down the production of calibrated weights and calibration
estimates of totals of survey variables for the TS, is access to external sources. This problem needs to
be tackled soon. A solution for the TS will clearly also be useful for other surveys where calibration
has to be done. Generally speaking, it is a problem of integrating various databases — both registers
and survey databases — in a single reference database.

V.E.2 The sampling design

The sampling design for the TS 2000 has deliberately been kept very simple. This is because, at the
end of 1999, we felt the need for a thorough study of all aspects of this survey. Simplicity makes it
possible to estimate variances within the generalised calibration framework. This in turn alows to
evaluate the precision of calibration estimators of study variables, and hence to evaluate the quality of
the survey. Decisions could then be drawn regarding a possible redefinition of the sampling design, if
necessary. In this study, we do not go that far, but | believe the fundamentals now have been
established to start that kind of quality study. Calibration is definitely an important intermediate step in
the production of high-quality estimates.

It was decided to draw 4 samples of households, corresponding to the 4 trimesters. Households
selected for a particular trimester receive the questionnaire by ordinary mail right after the trimester is

- 109 —



finished. They are kindly asked to complete the form about their travel experiences (both for leisure
and for business) in the preceding trimester.

In this report, | have only used data for the 2™ trimester to illustrate various aspect of — or related to —
calibration. The sampling design is STR-SRS, or dtratified simple random sampling, of households.
The sampling frame is a list of administrative private households, constructed from the National
Register dated 1/1/2000. The stratification variables for the 2™ trimester are:

= REGION: distinguishing the maor geographical areas Brus-Brux, Vlaanderen and
Wallonie;
. PROV: distinguishing the 10 Belgian provinces and the Brussels Metropolitan Area (or
Brus-Brux); PROV isarefinement of REGION;
" AGESIZ: a combination of age of reference person (RP) of a household and household
size, with the following 17 categories:
0 1="<25& 1p” 2="<25& 2+"
0 3="25-39& 1p” 4="2539& 2p” 5 = "2539 & 3p’
6="25-39 & 4+”
0 7="40-54 & 1p” 8="40-54 & 2p” 9 = “40-54 & 3p”
10="40-54 & 4+"
0 11="55-64 & 1p” 12="5564& 2p" 13 = “55-64 & 3p”
14 ="55-64 & 4+”
0 15="65+ & 1p” 16 =65+ & 2p” 17 ="65+ & 3+”

A priori sampling fractions for the 11 x 17 = 187 sampling strata are ranging from 1/1000 to 1/200;
the overall sampling fraction is 1/524, corresponding to about 8204 initially sampled households.
Sampling fractions do not vary by PROV within REGIONs. Larger non-response rates (from
experience in the 1% trimester) in some strata (e.g. in Brus-Brux, for smaller households and for
younger RPs) are taken into account.

The definition of stratification variables, from basic variables in the household sampling frame is
stored as SPSS syntax. A SPSS data file, called DESIGN_STRATA.sav (187 records), contains the
stratification variables, a stratum identification, and for each stratum or record the number of
households in the sampling frame and the number of households selected from the frame. From the
latter two variables the sampling fractions, and hence the sampling weights, can be recal cul ated.

V.E.3 Preparing input filesfor g-CALIB-S

Two SPSS syntax files are constructed to transform basic data on sampled (responding and non-
responding) individuals’households in the above mentioned text file t.i11.B23A.T0002.D071200 and
from the sampling information file DESIGN_STRATA.sav into a household respondent file, and
findly into a survey data input file for g-CALIB-S. The two syntax programs,
TS PrepareRespondingHH.sps and TS MakeHHDesignMatrix.sps, are reproduced in appendix
VI1.B. | believe these are very interesting files, showing how from basic data g-CALIB-S s input files
can be prepared. The programs are important study material, for potential users of g-CALIB-S. It is
demonstrated in these syntax programs how the construction of the survey datainput file can be stored
in well-structured and well-documented computer programs. Once such programs exist, it is relatively
easy to modify the syntax when the calibration model has to be changed. This may be necessary for
several reasons. new auxiliary information may become available, other calibration variables will be
used, one wants to switch from household-level calibration to individual-level calibration, or
calibration will be on both household and individual level simultaneously. Last but not least, and this
is exactly my proper recent experience, the programs may have to be adapted to available series of
calibration totals. The latter is still the weakest point in these programs, but if in the future external
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databases (from registers or surveys) will be more easily accessible, then we will certainly be able to
improve the programs, probably setting up finally a more standardised and complete set of data
transformation programs.

These programs are called in a SPSS Production Facility job. The starting window and prompts
window are as below. The input files are the files as mentioned earlier. Notice that the macros in g-
DESIGN.sps are used (in the second program) to construct the design matrix for calibration. The
output files are indicated as the “ Sample of responding HHs’ and the “ Survey data input file for g-
CALIB-S’. Notice that the second file also contains the sampling weights.

g 5P55 Production Facility O] =]
File Edt Bun “Windows: Help

DS = S| &[5@ |

oo L4 B64-reizsonderzoek\5 ampleiR oZ000A T rim24\5 PS5 5Job1-HHresp. spp

Creator/owner: Icamille.vanderhueﬂ

Syntax Files: | C:\E64-reizonderzoek S ampleh R 020008 Trim24 T5_PrepareRespondingHH. sps E
C:\864-reizonderzoek S amplehR o 20004 Trim24T 5_k akeHHD esignbd atris. zps

Bad| e g
Camments: Creation of (171 HH rezpondent file [with proper HH and BP information) ;I
and/or [2°1HH design matrix far calibration _I

. . . Cutput Type
[~ Frint output on completion of job ’7

& Wiewer = Diraft Yiewer

" Folder for output

C:4864-reizonderzoekhS ampleh A 0 20004 T rirm2 Browse. . |

E wport Oplions. .. | Lzer Prompts...

oo User Prompts for C:4864-reizonderzoek\5ample\R 020004 T rim24\5P55. .

whork, directary IE:\EE#-reisunderzuek"xS ampletR020004T rim2Y,
Iritial zample of perzons It. i11.B238, 70002 D071 200

Sample of respotding HH = IT 520007 2-HH-Fsample. sav

Saoftware directany II::'inEIS-I:uml:new"-.l:alil:uratil:un"-.g_DESIEN"-.

Survey data input file for g-CALIE-S IT 520007 2-HH-Design. sav

S ampling stratific-ation paremeter file IDesign_Strata.sav

] I Cancel Help

At the end of the job, an additional file named TS-CalTotStructure.sav is created, by aggregating the
survey data input file for g-CALIB-S on the calibration stratum variable STRATUM. Sample totals of
calibration variablesin the latter file are produced thisway. Thisinformation is useful to detect empty

- 111 -



classes, which should then have to be treated further manualy, in order to avoid problems when
calibration is performed. More importantly, the sample totalsin TS-Cal TotStructure.sav can simply be
replaced with appropriate calibration totals. The new file is then the calibration totals input file for g-
CALIB-S. Interestingly, we prepared a lot of calibration variables in the survey data input file, and
consequently also had these calibration variables in TS-CalTotStructure.sav. However, only for 2
underlying calibration variables the calibration totals were easily available (actually from
DESIGN_STRATA.sav!), so that only a minority of cells could be filled with a calibration total; the
other cells had to be emptied! This doesn’'t cause a problem for g-CALIB-S, as long as calibration
variables with empty cells are not selected in the calibration model.

Another interesting feature of the data transformation programsis that (detailed) response information
can easily be produced from now on. As an example, consider the table below, produced by the first
program when sampling information from DESIGN_STRATA.sav is included and statistics are
printed to file in order to be able to inspect the results of the first part of the data transformation.

Province — Brussels = Antwerpen

RP-age{ Nbr. of Nbr. of STR-SRS
HH-sizgHHs in the HHsin the Sampling
combinatig HH's HH's weight of
n|{ popul ation sample the HH
stratum Stratum
Mean VaidN Mean ValidN Mean VaidN
0-24 1p 9678 N=1] 23 N=1  420.78 N=1]
0-24 2+H 6512 N=2] 9 N=2] 72356 N=2]
25-39 1p 50328 N=33 118 N=33 426.51 N=33
25-39 2p 39179 N=§ 37 N=8 1058.89 N=§
25-39 3p 35428 N=17 33 N=17] 1073.58 N=17
25-39 4+ 56770 N=21] 53 N=21] 1071.13 N=21]
40-54 1p 40856 N=21] 57 N=21 716.77 N=21]
40-54 2p 43434 N=21] 43 N=21] 1010.09 N=21]
40-54 3p 43423 N=23 43 N=23 1009.84 N=23
40-54 4+H 72351 N=38 72 N=38 1004.88 N=38
55-64 1p 26035 N=17 46 N=17] 565.98 N=17
55-64 2p 51049 N=39 89 N=39 573.58 N=39
55-64 3p 16866 N=21] 30 N=21] 562.20 N=21]
55-64 4+ 9188 N=7] 16 N=7] 574.25 N=7]
65+ 1p 81786 N=47 82 N=47] 997.39 N=47
65+ 2p 83586 N=78 146 N=78 57251 N=78
65+ 3+ 15702 N=17] 28 N=17] 560.79 N=17]

This is only one out of 11 such tables, for the province of Antwerpen, but it shows clearly that
response rates can easily be produced now; “Valid N” stands for the number of responding
households. A bit more work on the programs is required to include the production of response
information in the calibration preparation step. Thus, the programs might become useful (data mining)
tools for the survey manager who needs to follow up response behaviour and data collection. It simply
implies that the text file mentioned earlier (t.i11.B23A.T0002.D071200 for the 2™ trimester) should be
available and be consulted frequently.

The calibration variables that can finally be used, because the corresponding calibration totals are in

the calibration totalsfile, are X0, AGEL to AGES (for age classes of RP, called AgeRP5 hereafter) and
HHS1 to HHS2 (1 resp. 2 or more persons in the household, called HHsize2 hereafter). Notice that the
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data are of type (Z,a,s), as in section III.LE.3. The calibration models are of type

{min d'G(g);2'Dg=s7 me}. See table 3.8. The maximal design matrix corresponds to the
model formula 1 + AgeRP5 + HHsize2.

V.E4

Calibration results

For illustration we have retained 6 models:

Model 1:
Model 2:
Model 3:

Model 4 :
Model 5:
Model 6:

G_WEIG

G_WEIG

HHsize2

linear method and model structure 1 + AgeRP5 + HHsize2
multiplicative method and model structure 1 + AgeRP5 + HHsize2
truncated linear method, with L = 0.0 and U = 1.5, and model structure 1 + AgeRP5 +

logit method, with L = 0.0 and U = 2.5, and model structure 1 + AgeRP5 + HHsize2
multiplicative method and model structure 1 + AgeRP5
multiplicative method and model structure 1 + HHsize2

Fig5.7 Comparison of 4 series of g-weights from household-level calibration of TS
2000 data (trimester 2), all with model formula 1 + AgeRP5 + HHsize2

3.0

25

20

3.0

25

20

Linear method

Multi plicative method

*

*
é 0
= 643 544 33

35

3.0 *

*
25

20 * *

*
o o
= 643 1544 33

G_WEIG

it
1.00 2.00 3.00

STRATUM

Logit method
withL=0.0andU =25

1.00 2.00 3.00

STRATUM

Truncated linear method
withL=0.0andU =15

—

T

G_WEIG

1533
2.00 3.00

STRATUM

643 1544 1533
1.00 2.00 3.00

STRATUM

- 113 -



The results (estimated g-weights) are in figures 5.7-9. The results for models 1 to 3 are very similar.
Thisis confirmed by the 3D scatter in figure 5.8, which could be constructed easily after merging the
survey data input file with the three (renamed) output files WEIGHTS.sav for models 1 to 3. The line
segments in this graph are called “spikes’ and connect each (x,y,z) data point (corresponding to a
household) in the g-weight space with the origin. The fact that many spikes coincide indicates that
most data points are on the line x = y = z of equal g-weights from the three models.

Fig5.8 Comparison of 3 series of g-weights from househol d-level
calibration of TS 2000 data, all with model formula
1 + AgeRP5 + HHsize2, by means of a 3D scatter diagram
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Some problems were encountered with the logit method (model 4). First, severa different pairs (L, U)
were tried, but the calibration failed for calibration stratum 1 (REGION Brus-Brux). We don't see
why, at this moment. Second, it is strange that the U-value had to be increased from 1.5 under the
truncated linear method to 2.5 under the logit method. The theory in section I1.C, however, indicated
that extreme values for L and U are independent of the distance or calibration function. We have
currently no explanation, so that further research is necessary, possibly resulting in improvements to
our software g CALIB-S.

We then omitted one of the terms in the model formula (and used the multiplicative method
invariably): the new models are models 5 and 6, for which the estimated g-weights are plotted in
figure 5.9. Comparing models 5 and 6 with model 2 seems to indicate that HHsize2 has minor effect
on the g-weightsin calibration stratum 3 (REGION Wallonie), while AgeRP5 has minor effect only in
calibration stratum 2 (REGION Vlaanderen). This kind of calibration model comparisons has to be
studied further, and formal statistical tests should be implemented in calibration practice.
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Fig5.9 Comparison of 2 series of g-weights from household-level calibration of TS
2000 data (trimester 2); multiplicative method

1+ AgeRP 1+ HHsize2
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*
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Finally, for all models 1 to 6, the scale parameters @ for the three calibration strata were estimated
from the data (variable X0). Hence the g-weights are always with respect to the scaled sampling
weights. Therefore, the g-weights do not reflect to correction for non-response, but merely the effect
of sampling error. The estimates for @ however can be interpreted as estimated reciprocal response
rates, globally within the three calibration strata. This is true because the initial weights are the true
sampling weights. The respective values are 2.24841, 2.02310 and 2.23724. These are indeed

comparable with the reciprocal overall response rate of 8,204/3,720 = 2.20538, or a response rate of
45.34%.
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V.F GENERALISED RAKING OF CROSS-CLASSIFICATIONS OF LABOUR VOLUME AND
LABOUR COMPENSATION

V.F.1 The problem

In this section, we discuss generalised calibration for cross-tabulations of labour volume of employees,
labour volume of self-employed people and compensation of employees by branch of industry
(BRANCH), gender (SEX) and level of education (EDUC).

Our aim in this report is merely to illustrate generalised calibration technology, so the reader is asked
not to consider the figures here below as being final.

The National Accounts (NA-1997) are providing an appropriate breakdown by BRANCH (NACE
classification), but a breakdown by SEX and EDUC is not available from this source. The labour force
survey (LFS) carried out by Statistics Belgium, however, provides a breakdown by al three variables.
The data on |abour volume of employees and of self-employed people are shown in tables 5.2 and 5.3.
The row (SEX-EDUC) totals, from the LFS, will be calibration totals. The NA’s labour volume
distribution by BRANCH, adjusted for the LFS's total labour volume, will serve as a series of
calibration totals by BRANCH,; the figures are in the last row in each table.

Table5.2 Labour volume of employees (x10%) by BRANCH, SEX and EDUC; breakdown
from LFS with breakdown by BRANCH from NA

BRANCH
SEX A+B  C+D+E F  G+H+l RK  other | Total
EDUC

Made

Lower 6.63 27065 107.75 245.45 56.87 180.24| 867.59
Middle 469 19213 59.18 125.24 24.26 77.67| 483.17
Higher 1.08 112.66 14.17 65.42 9229 214.96| 500.58
Female
Lower 2.74 92.71 5.14 142.5 65.04 239.45| 547.58
Middle 1.57 43.9 161 68.78 2211  119.98] 257.95
Higher 0.17 46.42 3.48 50.72 50.19 36141 521.39
Total 16.88 75847 191.33 698.11 319.76 1193.7] 3178.3

% from NA 0.64% 21.69% 5.66% 21.74% 10.39% 39.88% 100%
Adjust. NA 20.21 689.44 179.93 690.89 330.32 1267.47| 3178.3
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Table5.3 Labour volume of self-employed (x10%) by BRANCH, SEX and EDUC;
breakdown from LFS, with breakdown by BRANCH from NA

BRANCH
SEX A+B C+D+E F G+H+l JHK other Total
EDUC

Mae

Lower 35.72 15.37 31.66 81.18 12.45 10.45 186.82
Middle 18.15 10.99 22.92 49.14 4.12 6.98 112.29
Higher 3.16 8.08 5.06 28.21 43.92 38.13] 126.56

Female
Lower 19.07 4.6 1.65 63.17 7.52 15.39] 111.39
Middle 6.25 25 0.64 22.61 1.8 13.82 47.62
Higher 2.73 3 11 21.45 15.6 32.26 76.13
Total 85.07 4454 63.02 265.75 85.42 117.02| 660.82

% from NA 8.71% 4.53% 6.66% 28.63% 34.04% 17.43% 100%
Adjust. NA 57.53 29.95 44.02 189.22 224.93 115.16] 660.82

Data on “compensation” of employees are found in table 5.4. For compensation, the situation
concerning availability of data is a bit more difficult then for labour volume. As for labour volume,
(percentage) breakdown of compensation by BRANCH is il available in the NA 1997 : relative and
absolute figures are in the last two rows of table 5.4. The European Structure of Earnings Survey
(SES-1995) provides a breakdown of wages, which are only one component of compensation, by
BRANCH, SEX and EDUC, but restricted to NACE C to K branch of industry. To complete table 5.4,
i.e. to fill in the initially empty columns “A+B” and “other”, and to transform wages into
compensation, the following procedure is followed.

SES 1995 also gives the corresponding (restricted) breakdown of average wage (wage per employee).
For each class of industry (C+D+E, F, G+H+l, J+K) we calculate the relative average wage, and an
un-weighted average of these 4 relative distributions of wage per employee is then obtained. For
classes “A+B” and “other” of BRANCH we find overal average compensation by dividing tota
compensation of employees in these classes (from NA, i.e. 12.0 and 1525.0, resp.) by the
corresponding total labour volumes (as found from LFS's total labour volume and NA’s percentage
distribution of labour volume, i.e. 3178.3 x 0.64 % = 20.21 for “A+B” and 3178.3 x 39.88 % =
1267.47 for “other”; see table 5.2). The average distribution from the other 4 classes was applied to
these two figures, in order to complete the cross-classification of average wagesin BRANCH classes
“C+D+E", “F’, “G+H+I” and “J+K” and (imputed) average compensation in BRANCH classes
“A+B” and “other” by all three classification variables. Finally, averages are transformed into
(estimated) totals through multiplication with labour volume estimates as found in table 5.5 panel A
(first part: estimated labour volume for employees). These are the datain table 5.4.

Cdlibration totals by BRANCH are in the last row of table 5.4. There are no calibration totals
corresponding to SEX and EDUC for these data on labour compensation. Hence the marginal column
in table 5.4 is not compl eted.
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Table5.4 Compensation® of employees (x10° BEF) by BRANCH, SEX and EDUC;
breakdown from LFS, with percentage breakdown by BRANCH from NA

BRANCH
SEX A+B C+D+E F G+H+l JHK other Total
EDUC

Mae

Lower 379 236.82 70.26  195.92 55.98 192.29 -
Middle 3.18 189.40 4510 118.73 33.87 97.92 -
Higher 1.10 166.30 17.20 9485 161.31 403.14 -
Female
Lower 0.99 52.85 2.95 76.01 34.85 159.10 -
Middle 0.73 30.64 1.01 43.98 20.64 104.26 -
Higher 0.11 42.30 2.47 48.03 67.38 434.02 -

Total 990 71830 13898 577.52 374.02 1390.73 -
% from NA 0.27% 24.73% 4.93% 21.01% 14.87% 34.19% 100%
Abs. (NA) 12.00 1103.00 220.00 937.00 663.00 1525.00| 4460.00

a u

Compensation” means. wage for BRANCH categories C-K, and (imputed)
compensation for other BRANCH categories.

V.F.2 Preparing the data

Section 111.C (sub-section 111.C.3 in particular) points out how the cross-tabulations in tables 5.2-4
must be transformed in order to create the input files for g-CALIB-S. Wefirst constructed a SPSSfile,
called CROSSTABS.sav, as follows. Each record corresponds to a cell in one of the three tables.
There are 5 columns (variables), called SEX, EDUC, BRANCH, LABOUR and TABLE. The first
three variables are numerical versions of the three classification variables in the tables (with obvious
integer-valued coding). The variable TABLE contains the table number (1, 2 or 3, resp. for tables 5.2,
5.3 and 5.4). The variable LABOUR contains labour volumes, as in tables 5.2 and 5.3, or
compensation, as in table 5.4. For example, the first record contains the data vector (1, 1, 1, 6.63, 1),
and represents the first cell in table 5.2; similarly for the 36 x 3 — 1 = 107 other records. Hence,
CROSSTABS.sav contains the above tables in appropriate column format.

A SPSS syntax program, TRANSFORM CROSSTABS.sps, is reproduced in appendix VI1.D.1: it uses
the macros in g-DESIGN to transform the cross-tabulation in column format (CROSSTABS.sav) into
an appropriate survey data input file for g-CALIB-S. Notice that the variable TABLE becomes the
calibration stratum variable STRATUM, and LABOUR becomes the initial weights variable
WEIGHT. A case identification (CASE) is constructed from the variables TABLE, EDUC, SEX and
BRANCH. The output fileis called COLLAPSED_DATA .sav, and will serve as survey datainput file
for g-CALIB-S.

The calibration totals are stored in TOTALS.sav, which has a structure that is similar to that of
COLLAPSED_DATA.sav. The values were copied from an Excel workbook (which was used for
preliminary exploration of the data) into TOTALS.sav. There are missing values in this calibration
totals file: the third record, corresponding to TABLE=3, or calibration STRATUM=3, contains no
values for the calibration variables corresponding to SEX and EDUC, but only for the calibration
variables corresponding to BRANCH. For the other two tables (or calibration strata) the records are
complete. This peculiarity can easily be dealt with by g-CALIB-S: in one run tables 1 and 2 will be
calibrated, and in another run table 3 is calibrated.
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V.F.3

We then applied the raking method to our data, i.e. a generalised calibration model with an
exponential calibration function F (the “multiplicative” method). The appropriate model formula for
the data on |abour volume in tables 5.2 and 5.3 is 1 + BRANCH + SEX*EDUC (or 1 + BRANCH +
SEX + EDUC + SEX.EDUC), and the model formula for the data on labour compensation is simply 1
+ BRANCH. As explained in the previous section, this needs two separate runs of g-CALIB-S. We
have instructed the calibration software to calculate the scale parameter, separately for each table (or
calibration stratum), from the data, using the calibration variable X0 with constant value 1. In the first

Application of generalised raking

run, the input parameters for g-CALIB-S are set asfollows:

Parameter Value Comment

(macro name)

@WORKDIR C:\Actuaris_stage\Cases\Anjal

@XDATA Collapsed Data.sav

@CALTOT Totals.sav

@XVARS X0, B1to B6, SE11 to SE23 1+ BRANCH +
SEX*EDUC

@STR 1 1 All 2 tables are estimated ...

@STR N 2 ... with this model formula

@TYPE 2 i.e. Classical raking ratio

@SCALE 0 Scale from the data (X0)

@L 0.7 Not used since @TYPE =2

@u 15 Not used since @TYPE =2

@TOoL 0.000001

@ITERMAX 100

@INFO N

In the second run, the input parameters for g-CALIB-S are set as follows:

Par ameter Value Comment

(macro name)

@WORKDIR C:\Actuaris_stage\Cases\Anja

@XDATA Collapsed Data.sav

@CALTOT Totas.sav

@XVARS X0, B1to B6 1+ BRANCH

@STR 1 3 Only table 3 is estimated ...
@STR N 3 ... with this model formula
@TYPE 2 i.e. Classical raking ratio
@SCALE 0 Scale from the data (X0)
@L 0.7 Not used since @TYPE =2
@u 15 Not used since @TYPE =2
@TOL 0.000001

@ITERMAX 100

@INFO N
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The estimated scale for each of the first two tables is 1.0, as expected; the estimated scale equals
136.27 for TABLE 3. The numbers of iterations were 4, 6 and 4, resp. The estimated g-weights are
shown graphically in figure 5.10.

Fig 5.10 Estimated g-weights for labour volume of employees (“ stratum” 1) and of
self-employed (“ stratum” 2), in left panel, and for labour compensation of
employees, in right panel; generalised raking method; different model
formulae

1+ BRANCH + SEX*EDUC 1+ BRANCH

* X
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Next, for data on labour volume (strata 1 and 2), we applied the raking method with model formula 1
+ BRANCH + SEX + EDUC, i.e. omitting the joint effect from SEX and EDUC. Applying this model
is equivalent to classical raking in a 3-way cross-classification. The estimated g-weights for this
dlightly simplified model are in figure 5.11. Comparison of this graph with the one in the left panel of
figure 5.10 may give some indication about the significance of the joint effect of SEX and EDUC on
the estimated g-weights. Our software g-CALIB-S provides tables with summary statistics for the
distributions of g-weights and calibrated weights within each calibration stratum, but these are not
reproduced here. At first glance, there seems to be no significant joint effect from SEX and EDUC.
We should perform formal (statistical) tests to draw firm conclusions with respect to significance of
various termsin a calibration model formula. This, however, is not atopic of this study.

Fig5.11 Estimated g-weights for labour volume of employees
(“stratum” 1) and of sdf-employed (“stratum’ 2);
generalised raking method; model formula
1+ BRANCH + SEX + EDUC

5

1 ;

36 36
1.00 2.00

G_WEIG

STRATUM
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V.F4 Presentation of theresultsin cross-classification tables

g-CALIB-S delivers the results of calibration in standard output files; see sections IV.B.2.iii-iv. For
the present application on labour volume and labour compensation we have written a SPSS syntax
program to produce cross-tabulations of g-weights and calibrated weights. The latter are the adjusted
labour volume and labour compensation statistics the user will be interested in. The tables have the
usual format; we present these on the next pages, without changing the layout. The program,
ESTIMATES.sps is reproduced in appendix VII.D.2, for illustrative purposes; the program was
included in the job calling g-PREPARE.sps and g-CALIB-S.sps (section 1V.B.5). ESTIMATES.sps
demonstrates how g-CALIB-S's input and output files have to be merged to prepare output in a
readable format.

Comparison of tables 5.5 panel A and 5.6 confirms that the joint effect of SEX and EDUC is very
small for the data on labour volume (“strata” 1 and 2).

This application (of g-CALIB-S) was an unusual one: the study variable (here: labour
volume/compensation) is involved in the calibration through the (initial) weights, and cannot be
separated from the auxiliary variables (gender, education, branch of industry). Otherwise stated:
generalised raking in cross-classifications can be solved by means of our software g-CALIB-S, but it
doesfit merely artificialy into the generalised calibration framework based on (aggregated) individual
observations. Asiillustrated here, the power of software like g-CALIB-S partly liesin the flexibility to
change easily from one model (formula) to another.

Finally, it is noteworthy that percentage distributions were involved as calibration benchmarks. Our
software does not (yet) allow working with relative distributions directly, so that absolute distributions
are to be prepared beforehand by the user, and stored in the calibration totals input file. The SAS
macro CALMAR can work directly with percentage distributions. This is related to the fact that the
original variables are automatically transformed into indicator variablesin CALMAR.
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Table5.5 Panel A Estimated labour volume (x10° BEF) for employees (“ stratum” 1), labour volume (x10° BEF) for self-employed

Estimated contingency table (CALWEI in table format)

STRATUM 1.00

(“ stratum” 2); generalized raking method; model formula: 1 + BRANCH + SEX*EDUC

BRANCH Table
Total
1.00 2.00 3.00 4.00 5.00 6.00
Sum Sum Sum Sum Sum Sum Sum
SEX 1.00 EDUC 1.00 CALWEI 8.06 246.95 101.84 248.88 61.23 200.64] 867.59
2.00 CALWEI 5.78 177.76 56.72 128.76 26.48 87.67| 483.17
3.00 CALWEI 1.26 98.49 12.83 63.55 95.19 229.26] 500.58
2.00 EDUC 1.00 CALWEI 3.18 80.72 464 137.88 66.82 254.35| 547.58
2.00 CALWEI 1.82 38.18 1.45 66.48 22.69 127.32] 257.95
3.00 .19 39.20 3.04 47.60 58.98 372.37] 521.39
Table CALWEI 20.28 681.30 180.52 693.15 331.39 1271.62| 3178.26
Total
Estimated contingency table (CALWEI in table format)
STRATUM 2.00
BRANCH Table
Total
1.00 2.00 3.00 4.00 5.00 6.00
Sum Sum Sum Sum Sum Sum Sum
SEX 1.00 EDUC 1.00 CALWEI 24.88 11.57 22.42 63.48 49.96 1452 186.83
2.00 CALWEI 13.95 9.12 17.91 42.39 18.24 10.700 112.30
3.00 CALWEI 1.06 2.92 1.72 10.61 84.77 25.48 126.56
2.00 EDUC 1.00 CALWEI 12.45 3.24 1.10 46.29 28.28 20.04 111.40
2.00 CALWEI 4.08 1.76 42 16.58 6.77 18.00 47.62
3.00 1.12 1.33 .46 9.89 36.91 26.43 76.14
Table CALWEI 57.54 29.95 44,03 189.23 22494 115.16| 660.85
Total
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Table5.5 Panel B Estimated labour compensation (x10° BEF) for employees (“ stratum” 3); generalized raking method:

model formula: 1 + BRANCH

Estimated contingency table (CALWEI in table format)

STRATUM 3.00

BRANCH
1.00 2.00 3.00 4.00 5.00 6.00
Sum Sum Sum Sum Sum Sum
SEX 1.00 EDUC 1.00 CALWEI 459 363.65 111.21 317.87 99.23 210.85
2.00 CALWEI 3.85 290.83 71.39 192.63 60.04 107.37
3.00 CALWEI 1.33 255.36 27.22 153.89 285.94 442.06
2.00 EDUC 1.00 CALWEI 1.20 81.15 4.67 123.32 61.77 174.46
2.00 CALWEI .88 47.05 1.60 71.36 36.59 114.33
3.00 .13 64.95 3.91 77.93 119.44 475.92
Table CALWEI 12.00 1103.00 220.00 937.00 663.00 1525.00
Total

Table
Total

Sum
1107.41
726.12
1165.81
446.58
271.80
742.28
4460.00

a STRATUM = 3.00
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Table5.6 Estimated labour volume (x10° BEF) for employees (“ stratumi” 1), labour volume (x10° BEF) for self-employed (“ stratun’
2); generalized raking method; model formula: 1 + BRANCH + SEX + EDUC

Estimated contingency table (CALWEI in table format)
STRATUM 1.00

BRANCH Table
Total
1.00 2.00 3.00 4.00 5.00 6.00
Sum Sum Sum Sum Sum Sum Sum
SEX 1.00 EDUC 1.00 CALWEI 8.06 246.94 101.96 248.74 61.13 200.50 867.34
2.00 CALWEI 5.75 176.83 56.49 128.02 26.30 87.15 480.54
3.00 CALWEI 1.27 990.11 12.93 63.92 95.66 230.57| 503.46
2.00 EDUC 1.00 CALWEI 3.18 80.81 465 137.95 66.79 254.46| 547.83
2.00 CALWEI 1.84 38.60 1.47 67.16 22.90 128.61] 260.58
3.00 .19 39.01 3.03 47.34 58.61 370.32| 518.51
Table CALWEI 20.28 681.30 180.52 693.15 331.39 1271.62] 3178.26
Total
Estimated contingency table (CALWEI in table format)
STRATUM 2.00
BRANCH Table
Total

1.00 2.00 3.00 4.00 5.00 6.00
Sum Sum Sum Sum Sum Sum Sum
SEX 1.00 EDUC 1.00 CALWEI 24.45 11.41 22.53 62.02 48.22 14.05( 182.68

2.00 CALWEI 13.32 8.75 17.49 40.26 17.11 10.06/ 107.00

3.00 CALWEI 1.16 3.20 1.92 11.51 90.84 27.37] 136.01

2.00 EDUC 1.00 CALWEI 13.03 3.41 1.17 48.19 29.08 20.66] 115.55

2.00 CALWEI 4.58 1.99 49 18.50 7.47 19.89 52.92

3.00 1.00 1.19 42 8.74 32.22 23.13 66.69

Table CALWEI 57.54 29.95 44.03 189.23 224.94 115.16| 660.85

Total
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V.G GROSSING-UP THE STRUCTURAL BUSINESS SURVEY (SBS) ON ENTERPRISES
V.G.1 The problem

The main purpose of the present section is to study the currently used extrapolation technique for the
Sructural Business Survey (SBS) on enterprises, carried out at Statistics Belgium since 1995. Our
ultimate goal is to verify whether this technique can be treated as a special application of the
generalised calibration framework. We'll see in section V.G.3 that thisindeed is possible, which then
opens the way to more sophisticated calibration methods and amelioration of the weighting scheme, as
proposed in section V.G.4. Interestingly, this application deserves some special attention, due to the
presence of over-coverage, as explained in sections V.G.3-4. Care should therefore be taken,
especially when several calibration models are being compared.

We have chosen the 1998 SBS to work out theoretical aspects, as well as to illustrate our findings
numerically. However, numerical results as such should not be used, or compared with published
figures. So we have reduced the presentation of statistics on SBS variables in this text to an absolute
minimum.

The central statistical unit in our study is the enterprise; see Communautés Européennes (1993).

Statistics Belgium has set up a database on business activity, wherein the legal unit is the basic entity.
This database is called DBRIS, for Banque de Données des Redevables de I’ Information Satistique,
and is up-dated regularly using information from tax registers (i.e. VAT register, and IPCALART =
Impbt des Personnes Physiques — Calcul des Articles) and information from the social security
services (i.e. ONSS-RSZ or Office National de la Sécurité Social — Rijksdienst voor Sociale Zekerheid,
and INASTI-RSVZ or Institut National d Assurances Sociales des Travailleurs Indépendants -
Rijksdienst voor Sociale Verzekering van Zelfstandigen). Thus, DBRIS is an integrated database,
based on several external databases. The SBS too, athough being a sample-based survey, is used to
correct and extend information in DBRIS, whenever this is considered necessary. From DBRIS is
constructed yearly a population of enterprises, which is used as the sampling frame for the SBS. This
is a complex matter, and important to understand the specificities of the SBS, but the description of it
is beyond the scope of thistext.

The sampling frame is definitely not the target population in the SBS. Under- as well as over-
coverage is present, and appropriate means are to be taken to correct for the resulting non-sampling
errors. We'll see that this implies a quite special supplementary computational step, to be carried out
before generalised calibration can be applied.

| had to work on two tables, one for the sampling frame (called UNIVERS98), and one for the sample
(called ECHANTILLON), stored in an MS Access database. Only a few variables, relevant for the
present study, were selected for these tables from the original datafiles. An overview is given in table
5.7. The third column gives the new name | have assigned to the variables in SPSS syntax programs
and datafiles.
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Table 5.7 Variables used in this study, and included in the MS Access tables

Fieldin MS Access tables

Description

New SPSS
name

ECHANTILLON

NBR_ENT_TOTAL

Number of enterprisesin the stratum
(h) to which the enterprise (k) belongs,
from the sampling frame (i.e. N,, for
al kOF,; seeelsewherefor
notations)

NBR_FRAM

NBR_ENT_ECHAN

Number of enterprisesin the stratum
(h) to which the enterprise (k) belongs,
from the sample (i.e. n, for all

kOs,)

NBR_SAMP

POIDS_ENT

Thefinal weight (w, ), ascurrently
calculated

POIDS_EN

NACEBEL

NACE 4 code (4 digits)

NACE4

CLASSE Il

Classification by TO and ONSS size
class (see tables 6.* and 6.%)

CLSS Il

STATUT_SUIVI

4-digitcode containing information
about response / non-response,
activity, why activity stopped, ... on
sampled units

STAT_SUI

UNIVERS98

NACEBEL_REGROUPE

4 or 5-digit codes for NACE category

NACE GR

CLASSE_IMPORTANCE

ONSS size classification

CLSS IMP

CA_DECL_TVA

Turnover, from tax register

REVENU_INASTI

Turnover, from IPCALART, as
reported to INASTI

REV_INAS

CLASSE _IlI

Classification by TO and ONSS size
class

CLSS Il

A variable TO is derived from CA_TVA and REV_INAS, and measures turnover of the enterprise.

TOisused to construct one of the (post-) stratification variables.

CLSS _IMPisaclassification variable, based on the size of the enterprise, measured as the number of
salaried employees. It is a classification as used by ONSS. Table 5.8 presents the definition of

CLSS_IMP.

From TO (turnover) and CLSS _IMP (ONSS size classification) is constructed the variable CLSS |lI,

asgivenintable5.9. CLSS Ill isa(post-) stratification variable.

The second (post-) stratification variable is NACE4, which, in the sample, is derived from NACE_GR.

The values of NACE4 are not presented here.
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Table 5.8 ONSSsize classification CLSS IMP

CLSS IMP | Number of salaried employees
0 Enterpriseis not in the ONSS data base
(there are no salaried employees)
1-4
5-9
10-19
20—49
50—-99
100-199
200 — 499
500 — 999
1000 -

OO INO| AR WIN|F

Table5.9 Thevariable CLSS I, as constructed from TO and CLSS IMP

CLSS Il
TO (MIO Bef)
CLSS IMP | <20 20-50 50-100 100-200 200+
0 0 1 2 3 4
1 1 1 2 3 4
2 2 2 2 3 4
3 3 3 3 3 4
4 4 4 4 4 4
5 5 5 5 5 5
6 5 5 5 5 5
7 5 5 5 5 5
8 5 5 5 5 5
9 5 5 5 5 5

Based on the variable STAT_SUI, sampled enterprises are classified into 5 categories. The resulting
variable is called NRStatus, since it has to do much with the status of the enterprise as respondent or
non-respondent. NRStatus is described (not defined) in table 5.10. By “full activity” is meant that the
enterprise existed during the entire survey year (1998).
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Table5.10 Classification NRStatus of sampled enterprises

NRStatus | Description

A The sampled enterprise belongs to the target population, and is
arespondent with full activity in the survey year
B The sampled enterprise belongs to the target population, but is

a hon-respondent, since no or too bad information is available,
although there was full activity in the survey year

C The sampled enterprise does not belong to the target
population, but did respond

D The sampled enterprise could not be contacted (no information
about activity in the survey year is available)

E The sampled enterprise had incomplete activity in the survey

year (and belongs to the target population), but did not respond

This classification is splitting up the sample into five (mutually exclusive and exhaustive) sub-

samples: s=s"0sT] §§ 3 sF. Thesituation is schematically clarified by means of figure 5.12
on the next page.

V.G.2 The sampling design

Sratified simple random sampling (STR-SRS) is used for the SBS. The sampling strata are denoted h
(h=1..,H), and are the (non-empty) cells in a complete cross-classification of enterprises by the

stratification variables CLSS Il and NACE4. This stratification can be considered in the target
population U and in the sampling frame F, as well asin the initial sample, its 5 sub-samples, and the
respondent sample. The table below introduces appropriate notation:

Target Sampling Initial Respondent
population frame sample sample
Stratum h Uy Fy S Iy
Stratum size Ny Ny, M, m,
Union and total U and NY |F and N sand n r and m

Notice that the respondent sampler is simply the sub-sample s”.

If sub-samples, such as s*, are restricted to a particular stratum h, then we write s*. To simplify
notation we write s.° for s, 0 s°, etc.

For STR-SRS, it is easy to derive the first- and second-order inclusion probabilities (based on the
sampling frame counts!):

n, n.
ny =—— or ) '
= o KOR,OF. A b
My Np Ny
n =" = for k,OF,

— 128 —



Therefore, the sampling weights are: d, =m," = Ny for k O, . The simple formulafor the second-
My

order inclusion probabilitiesis useful to calculate variance estimates, as discussed in section 111.G; see

also section IV.C.2.vii.

Fig 5.12 Therelationship between the SBS sample s, with its 5 sub-samples, and the target
population U and sampling frame F

Target population U Sampling frame F

Full activity - Respondent sample s O
3
:
)
g 0
R
— ®
Full activity - Non-respondent sample s> = é
: B
e eeeetaeetaeeetaeeeeaeeetaeeeaeeenaeeneeanetaneeenaeenaeeeans = »
Incomplete activity - Non-respondent sample s- §, '8
0, o
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll j
Non-contact sample s” g
3
............................... =
| S |
| Non-sampled enterprises <
! 5|
| @
i i

Under-coverage of the sampling frame

Initial sample sizes are calculated from sampling frame sizes and sampling fractions f, as follows:
n, = N, x f,. Some sampling fractions, for large enterprises (i.e. in CLSS |l categories 4 and 5) are

set equal to one, such that sampling is exhaustive in sampling strata that contain large enterprises.
Other sampling fractions are between 1/100 and %2, depending on the size of the strata and the
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variability of turnover in the strata. Notice that the final values for the sample sizes are obtained by
rounding calculated sizes N, x f, .

We have retained N = 385,931 enterprises from the frame for our illustrative analysis. There should be
n = 37,673 enterprises in the initial sample; there are finally m = 32,918 enterprises in the respondent

sample r =s”. Those enterprises are distributed over H = 2,011 strata, in the data files we are
presently using.

V.G.3 Understanding current extrapolation practice

In many surveys, study variables are of different types, and the SBS is no exception. So we should
first specify for which type of variables we want to get calibration estimates of totals. Thisis usually
having an impact on the formulae for extrapolation. We restrict ourselves in this study to variablesy
such as turnover, various costs, etc; the relevance of this becomes clear when we explain the formula

for current extrapolation. The total t, = Z Yy, has to be estimated. Notice that we consider the total
kU

for the target population, not for the sampling frame. Only values vy, , observed for responding

enterprises k 0s”, can be used , so that grossing-up is from the respondent sample s” to the target

population U. The calibration estimator is: fy = Zwkyk, where w, is the calibrated weight, to be
ks

estimated from a suitable calibration model. The form of the w, will depend on the type of study
variable chosen.

Up to now, calibration for the SBS is essentially traditional complete post-stratification (with an
additional correction for over-coverage). The post-strata are simply equal to the sampling strata.
Conditions Cond 1-3 in section 111.B.1 are thus satisfied, so that the practical conclusions Pc 1-4 can
be taken into account in our discussion of extrapolation practice for the SBS.

The post-strata are equal to the sampling strata. This has two major disadvantages: (1°) no estimates
can be obtained if the sample doesn’t contain responding enterprises; (2°) the resulting weights are
likely to be unstable. One tries to avoid (1°) by making the SBS compulsory, but non-empty
respondent samples within al post-strata can still not be guaranteed. Notice that, given that Cond 1-3
are satisfied, the post-stratified (or calibration estimator based on post-stratification) can be written as

asum of independent estimators within post-strata: f, = nyh = Z Z*wkyk .
KOs,

The formula used to calculate the weights w, for enterprises k in the restriction r, = of the
respondent sample to the post-stratum h is;

nt nt
A B h A B h
w, = — 2 g (V.3)
k A ABCE k A ABCE ’
N, N, Ny, Ny,

The following reasoning can be built up to justify this formula.

Think first of the two-step grossing-up procedure in the simple situation wherer 0$1 £ U, wheres
is a SRS from F and no coverage problems are met. Grossing up of the observed total Z Y, (non-
kOr

weighted because of SRS) is first from the respondent sample r to the initid sample s by
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multiplication with the factor n and next from the initial sample to the target population U by
m

multiplication with % Hence: {, = Z Vi :ﬂﬂz y, - Notice the similarity with (V.3), but the
kCr rnI@r

latter formula includes an additional correction factor, which must be due to the complexity of the
SBS situation. Indeed the additional factor is due to coverage problems, as we now explain step by

step.

Step 0 Hypothesis: under-coverage exists, but has a small (ignorable) effect on estimates (negative
bias on estimates of totals of non-negative variables). Hence we assume that the sampling
frame F completely covers the target population U, or U O F . And no correction for under-
coverage has to be included therefore.

Step1 Calculate the (non-weighted) average of y over the sub-sample s.': the result is ;. The total
of yfor s is n’y;"*, simply the observed total.

Step2 Hypothesis: within the population of enterprises with activity during the whole year, non-
response is completely at random, i.e. y;* also applies to s°. Hence the total for s° is

estimated as (n}' +n)y;..

Step3  Hypothesis: a reasonable estimate for the average of y for enterprises that have not been
active during the whole survey year is y;'/2. Hence the total for s.°F is estimated as

E
_ _ ne o . : :
(n +nd)ye +nfyp/2 =(n{f +n? +7“jyﬁ. Notice that s,°F is the contact sample in the

target population.

Step4  Hypothesis: the contact rate among enterprises in the target population is equal to the
contact rate among enterprises which are out-of-scope, and therefore equal to the contact rate
among all enterprises, either inside or outside the target population. This contact rate (within

M=y _ o

the target population) is therefore estimated as The reciproca of this

My Ny
estimated contact rate is used to up-weight the total in step 3 to the set
s, NnU, =5, \(F, \U,), which is that part of the initial sample s, that is contained in the
E
A +ng+
target population. The resulting estimated total for s, n U, thusequals n, Tyh‘\.
My

Step5  Now, the inclusion probability for sampled elements in the target population is the same for

those outside the target population, i.e. % . Therefore up-weighting the total for s, nU,, in
h
E
ne +n’ + I
step 4 to the total for the target population U, resultsinto N, TEZ V.
My

The nature of the study variable y has become important in step 3. It is clear that the reasoning cannot
be applied to, for instance, the variable y=1, whose total to be estimated is the number NLJ of
enterprises in the target population U, .
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Steps 4 and 5 are quite subtle. It may be easier, and less confusing, to explain the up-weighting
~ ABCE ABCE Nh

instead of ™ and V" instead of N, where the tilde (=) denotes

N, N, n, N,
restriction to the target population. However, n, , for instance, cannot be determined, since elementsin

procedure in terms of

the non-contact sample s” cannot be identified as being inside or outside the target population. In

other words, we don’'t know the size of s nU,,. That's why we have to make the assumptions in

steps 4 and 5, so that not the “tilded” sizes themselves, but the ratios of “tilded” sizes can be replaced
by estimated ratios based on observable (sub-) sample (and sub-population) sizes.

The resulting estimator for thetotal t,,, of the variabley in stratum h can be written in several ways, in

order to make the step by step up-weighting explicit, and finally in order to write it in a “generalised-
calibration-like” form:

(V.4)

2. foral kOsP. (V.5)

V.G.4 Toward generalised calibration

Now, consider another study variable z, and suppose that z is constant within post-stratum h, i.e.
assume z, =1 for all k Os”. Assuming further that zis avariable of the same type as variabley in the
previous section, we get:

E
My + Ny +n7h(N)
~ — * _ * _ 2 _ *
Uy = degkzk = degk = th = Ny. (V.6)
k(s K s h

It might happen that z, =1 for al k s>, not just for aparticular post-stratum h, but for all post-strata
h=1,...,H. Then:
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AynByh
. H . H nh +nh + 2 H .
tz:ztm:zNhnAT:zNh. (V7)
h1 1St h =t

However, (V.6) and (V.7) should not be misunderstood as estimates for N, and N, , respectively, as

argued already in the previous sub-section. The only purpose of introducing the constant variable zand
setting its value equal to 1, isto move on to the generalised calibration model here below.

: : . . N ne . :
A possible correct interpretation follows from rewriting (V.6) as —g= [nhA +n® +7h) interpreting
My
nE
n® +n’ +7" as a measure for total “relevant activity” in s'°%, which is then up-weighted to the

. . . . . . Nh “ ”
sampling frame (in post-stratum h) through multiplication with the factor ABCE By “relevant” we
h
mean that activity of enterprises that are in the sampling frame but not in the target population is not
considered, and that enterprises (in the target population) with incomplete activity are considered as
enterprises  with only half as much activity as enterprises with full activity. Hence
. N nt\) . . R :
N, = T’éE[nf +ng +?“) will be interpreted as an estimate of total activity in the sampling frame
My

(restricted to post-stratum h). It isimportant to remark that all thisisjustifiable only in the context of
estimating study variables of the type as considered in the previous sub-section.

In the sequel we call the measures N, the adjusted (population) post-stratum sizes (as adjustments of

the sampling frame post-stratum sizes N,,, in the context of estimating study variables of the type as
considered in the previous sub-section).

We now consider the following generalised calibration problem:

»  The sub-sample of elements for which observations on y are available, and which can therefore be
up-weighted, is the respondent sample s”.

= Cadlibration variables are the post-stratum indicator variables: &, (h =1, ..., H), with values
3y, =1 if kOs! and 0 otherwise. (Such indicator variables resemble the variable z considered

here before!) The calibration vector for enterprise kisthus X, =(8yy,-.., 8 )T :
E

A, B,

= Calibration totals are the adjusted post-stratum sizes N, = N,, (h=1..,H).

ABCE
Ny,

- Initid weightsare d, =~ for k05", andforal h=1, ..., H.
ny,

= Then, one has to find g-weights g, (ks?), such that degkékh =N;. We aso add the
kOs

additional constraint that the g-weights are constant within each post-stratum.

The solution to this generalised calibration problem is exactly asin (V.5). For the above-mentioned
class of study variablesy the target population total t, can then be estimated as follows:
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de Ok Yk - (V.8)

H H
ty zt = z de Ok Yk =
05 ks

This proves that the extrapolation technique currently used in the SBS at Statistics Belgium can be
formulated as a generalised calibration problem. Notice that we have a very special calibration
problem here: complete post-stratification, with post-strata that coincide with the sampling strata. No
distance function had to be chosen, but if we want to use our software g-CALIB-S, then any distance
function G (or calibration function F) may be used. The linear method is the most economical choice,
since then no iteration is required.

=y
1
=l
=y
1
ey
x

V.G5 Generalised calibration for the SBSin the future

It should now immediately be clear that other auxiliary information could be integrated into the
calibration problem, i.e. that the current complete post-stratification problem can, quite
straightforward, be extended to a generalised calibration problem. A more general form of the
calibration vector, ill incorporating the post-stratum indicator variables, for element k is

(Lékl, Sy s X ,xp)T, with corresponding vector of calibration totals (N NN ,...,tp)T,

where N* = Z N, , and known x-totals t; (for the target population). The user should however have
h

our discussion in the previous paragraphs in mind, and calculate carefully meaningful calibration
totals: the type of study variables for which ultimately the total has to be estimated is of utmost
importance.

Of course, if the calibration problem is not post-stratification anymore, then the sampling weights
should be taken into account.

To demonstrate that calibration totals should be prepared carefully, just consider the above formula
N™ = Z N, , for computing the calibration total corresponding to the constant calibration variable 1.
h

E
n
n®+n® +—

One might suggest to calculate this total as N TEZ =N", similar to the way of computing
n

the calibration benchmarks N, . However, generally N™ will not be equal to N, so that, if N~
were used together with the N, , consistency of the calibration equations would be lost. Equality
N = Z N, precisely implies consistency when N is used together with the N, .

As seen before, complete post-stratification corresponds to the cross-tabulation of enterprises by
variables NACE4 (which has a lot of categories!) and CLSS Il (with 6 categories). Alternative
calibration models will then immediately be clear: calibration could be on the margins in the cross-
classification (together with calibration on other x-totals), or on the same margins and on counts
corresponding to regrouped cells in the table (together with calibration on other x-totals), etc. See
section 111.B.2 for a discussion of incomplete post-stratification techniques. Some of these models are
applied now to the SBS data for survey year 1998.

In order to prepare for application of the complete post-stratification model NACE4*CLSS Il =1 +
NACE4 + CLSS Il + NACE4.CLSS lll, but at the same time also for lower-order models 1, 1 +
NACE4 and 1 + CLSS 1l (see section 111.A.1 for interpretation of these model formulag), one should
calculate al calibration benchmarks as sums of those for the cells (h) in the complete cross-
classification by NACE4 and CLSS |l1l. Thisisto satisfy numerical consistency.
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The choice of the distance function is completely up to the statistician, with the consequence that this
choice will affect the g-weights.

All this shows that generalised calibration is a very efficient framework, by means of which
aternative, and probably more sophisticated calibration techniques become fairly obvious. The result
is that auxiliary information can be used in an optimal way; finally pointing to an efficient
extrapolation scheme that provides stabl e calibration weights (and g-weights) for the SBS. Anin-depth
study of weighting schemes SBS based on generalised calibration methodology will probably be the
topic of aforthcoming paper.

V.G.6 Some results

For numerical illustration, | have decided to select a small, manageable, part of the data. Only

enterprises in NACE1 category 4 are selected. In our respondent sample s* we then have only 3806
enterprises, classified within 21 NACE4 categories and 6 CLSS 111 categories, as shown in table 5.11.

Notice that some NACE4 x CLSS |l1 cells (post-strata) are empty in the respondent sample s”.

It took a significant amount of time to prepare, from the Access tables discussed in section V.G.1, the
input files for g-CALIB-S. The last part of the data transformation procedure only is interesting in the
context of this study. This last part is mainly performed by the syntax program SBS g-DESIGN.sps,
which can be found in section VII.E.1. Preparation of the input file Ultim Resp (A) Sample.sav wasin
fact more time consuming then writing the program SBS_g-DESIGN.sps and doing (manually) the
very last data preparations. The file Ultim Resp (A) Sample.sav could be considered a (standard, at
least for the SBS) survey data file, from which preparatory work for creating the input files for g-
CALIB-Swould start. This survey datafile contains enough information for each enterprisein asingle
record. Population information is included too, e.g. the number of enterprisesin the sampling stratato
which the enterprise considered belongs. Such information allows calculating sampling design
parameters, such as the sampling fractions, sampling weights, etc. Moreover, based on survey

variables it is possible to classify sampled enterprises immediately in one of the sub-samples s”, ... or
s®, so that in each record we can also include the numbers n/*, ... and n°, where h is the sampling

(or post-) stratum to which the enterprise belongs. Given the presence of al thisinformation, it isthen
finally possibleto calculate the adjusted frame sizes, i.e. the calibration totals needed for our analysis.

The purpose of SBS g-DESIGN.sps is to transform the “basic” data file Ultim Resp (A) Sample.sav
into appropriate input files for g-CALIB-S. The reader is asked to study the program in appendix
(section VIILLE.1). It is included for illustration, and can be useful as a starting point in new
applications. In particular, it shows how the macros for constructing the design matrix are used. The
last part of the program (after the matrix module) will be more confusion at first sight. Asindicated in
comments in the syntax itself, atable containing the calibration totals will have to be constructed. This
table, extended with marginal calibration totals, is reproduced here as table 5.12. It contains the
calibration totals for the post-stratification model 1 + NACE4 + CLSS 1l + NACE4. CLSS |lI, as
well as for al its sub-models (e.g. 1 + NACE4). Given the structure of the survey data input file SBS
Survey data.sav, which is completely constructed by the syntax itself, it is then not too difficult to
construct aso the calibration totals input file SBS Cal-totals.sav. Some commands at the end of the
syntax program are intended to be helpful in that respect. Notice that the calibration totalsin table 5.12
satisfy numerical consistency.
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Table5.11 Cross-classification of 3806 enterprisesin s”, by NACE4

and CLSS Il
CLSS |11
Numberin
g of
NACE4
categories NACE4 0 1 2 3 4 5 Total
1 4010 31 2 33
2 4020 1 1 1 7 1 11
3 4030 1 1 1 3
4 4100 1 19 2 22
5 4511} 21 21 16 26 29 6 119
6 4512 12 8 1 5 4 30
7 4521) 62 159 106 122 466 218 1133
8 4522 13 62 27 28 42 7 179
9 4523 9 15 14 31 105 47 221
10 4524 2 1 2 12 7 24
11 4525 44 53 19 24 43 22 205
12 453)] 68 89 33 33 105 40 368
13 4532 6 4 3 5 15 10 43
14 4533 54 116 43 43 103 24 383
15 4534 10 3 2 3 10 6 34
16 4541y 12 42 15 7 22 1 99
17 4542 66 141 58 56 96 16 433
18 4543 34 3B 11 16 3R 2 130
19 4544 34 82 27 25 72 18 258
20 4545 22 9 5 6 12 3 57]
21 4550 5 3 2 3 6 2 21
Total 475 844 385 437 1231 434 3806
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Table5.12 Calibration totals, i.e. adjusted frame sizes, appropriate for
applying the maximal model NACE4 * CLSS ||

CLSS |11
Numbering of
NACE4 categories NACE4 0 1 2 3 4 5 Total
1 4010 31.0 20 33.0
2 4020 10 30 10 70 10 13.0
3 4030 20 20 20 6.0
4 4100 7.0 190 20 28.0
5 4511 7480 393.0 1090 599 290 6.0 13449
6 4512 32.0 190 40 70 40 66.0
7  4521] 3685.6 3486.51136.3 5544 473.0 219.00 9554.8
8 4522 1043.0 1327.8 2450 1140 440 7.0 27808
9 4523 466.8 297.8 126.0 139.0 107.0 49.00 1185.6

10 4524 295 180 130 120 70 79.5
11 4525 29521 12147 191.8 111.0 460 220 4537.6
12 4531 41944 17765 353.0 1450 1085 410 66184
13 45320 4595 973 350 220 150 100 638.8
14 4533 3776.8 23945 4514 1820 1040 250 6933.7
15 4534 7790 1050 350 140 100 60 949.0
16 4541 843.0 8080 1270 260 220 10 18270
17 45420 42153 27778 5320 2280 970 160 7866.1
18 4543 20309 7909 1440 660 340 20 3067.8
19 4544 23243 1596.0 249.7 1160 740 18( 43780
20 4544 10866 1920 43.0 135 125 30 1350.6
21 4550 9.0 80 60 60 60 20 37.0

Total 28677.8 17287.6 3816.3 1819.8 1255.0 439.0) 53295.5

We are then ready to apply g-CALIB-S. The complete post-stratification model can be applied by
setting the parameters through the interface of g-CALIB-S asfollows:

Parameter Value Comment

(macro name)

@WORKDIR C:\Actuaris_stage\Cases\JeanMari€\

@XDATA SBS Survey data.sav

@CALTOT SBS Cal-totals.sav

@XVARS X0, NACE4 01to NACE4 21, 1+ NACE4 + CLSS Il +
CLAS 0,CLAS 1, CLAS 2, NACE4 * CLSS Il
CLAS 3,CLAS 4, CLAS 4,
N4CL001 to NACL 126

@STR 1 1 There no calibration strata

@STR_N 1 (i.,e. STRATUM = 1)

@TYPE 1 Irrelevant for compl ete post-

stratification

@SCALE 0 Estimated (from X0)

@L 0.7 Not used since @TYPE =1

@u 15 Not used since @TYPE =1

@TOL 0.000001

@ITERMAX 100

@INFO N
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With @XVARS as in the table, there are 141 calibration variables; for 3806 cases (enterprises); this
results into a large data matrix. But g-CALIB-S did not have a problem calculating the g-weights etc.
The scale was calculated as @ =1245680120, and the distribution of the g-weights is shown

graphically in figure 5.13. (The graphs are automatically produced by g-CALIB-S.) The (few) extreme
g-weights could be removed by application of a simpler model. The model without interaction effects
between NACE4 and CLSS |ll has been applied; the linear method was chosen. The results are
displayed in figure 5.14. There are no negative weights, although the linear method was used, and no
weights are to extreme. Hence there is no need to try another method, e.g. the multiplicative method to
make weights positive. Nevertheless, we have applied the classical raking method, i.e. the
multiplicative method with model formula 1l + NACE4 + CLSS 1, for illustration. The results for the
raking model are displayed in figure 5.15. As expected, the results of the linear method and the
multiplicative method, when the model formulais 1 + NACE4 + CLSS I, are barely different.

Fig 5.13 Distribution of g-weights and calibrated weights from application of the complete
post-stratification model NACE4 * CLSS Il
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Fig 5.14 Distribution of g-weights and calibrated weights from application of the LINEAR
calibration method, with additive model formula 1 + NACE4 + CLSS I
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Fig 5.15 Distribution of g-weights and calibrated weights from application of the
MULTIPLICATIVE calibration method, with additive model formula
1+ NACE4 + CLSS Il (i.e. the raking method)
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In table 5.13 we give summary statistics for the scaled weights — which are, of course, independent of
the calibration method —, the g-weights and the calibrated weights, for the three models that have been
applied. (The table is constructed from tables that are produced by g-CALIB-S; only minor work on
layout was necessary, in order to bring various tables together.) Clearly, the calibration method (here:
linear versus multiplicative) has virtually no effect on the (right) tail(s) of the distribution of the g- and
calibrated weights. Exclusion of interaction effects from the model formula tends to have only a
moderate effect on the distributions, for the data treated in this application. The main conclusion isthat
there is no need at all to stick with the complete post-stratification model for these data; and only
slightly more stability is obtained by dropping the interaction effects from the model. The classical
raking method thus seems to be an excellent technique for getting extrapolation coefficients for the
SBS data.

Table5.13 Summary statistics for scaled weights, g-weights and calibrated weights under
three calibration models, for SBS 1998 data (restricted to NACEL category 4)

Satistiq Method Modd formulgd Min| PergMedianf Mean Perg MaX Sd
25 75 Dev.

SCAWEI 1.25 1.25 495 14.00 21.13 66.77] 19.21]
CALWEI| Linear NACE4* CLSS |11j]1.00 1.02 4.39 14.00 19.96 80.23 19.83

Lineary 1+NACE4+ CLSS Ill| .83 1.02 4.42 14.00 20.48 79.78 19.74
Multipl.| 1+ NACE4+ CLSS Ill| .86 1.02 4.42 14.00 20.48 79.95 19.74
G_WEIG Linear NACE4* CLSS_Ill] .80 .81 .90 91 .98 241 .11

Lineary 1+ NACE4+ CLSS Illl .67 .82 .89 91 99 132 .10
Multipl| 1+ NACE4+ CLSS Ill] .69 .82 .89 91 99 132 .10

Finally, notice that g-CALIB-S's various output files, containing estimated weights, can easily be
merged, so that detailed graphical displays can be produced, allowing more detailed comparison of
different weighting schemes. | believe it is worth searching for a bit more automation in producing
such results. It would offer more flexibility — and more speed — in the process of studying different
potential weighting methods. In other words, g-CALIB-S, together with such complementary tools,
would provide a lot of support to the subject matter statistician who has to come up finally with a
reliable weighting scheme, which is only possible after thorough evaluation and comparison of (many)
possible aternatives.
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This work (on calibration) is not finished! | believe that a good start has been made in several ways,
two of which are: understanding generalised calibration methodology, and setting up a powerful and
flexible statistical tool and environment for calibration. However, calibration is only just one relatively
small part of the entire survey process, and several other issues should be studied in a similar way.

There were several reasons for writing this document on generalised calibration, such as:

=  Documenting current state-of-the-art in survey calibration and estimation methodology, and, at
the same time, providing a sound starting point for an in-depth methodological study of each of
our surveys at Statistics Belgium.

= Bringing practice-oriented issues in generalised calibration together in a single document, which
hopefully will serve as a guide in that phase of the survey process that has to do with
extrapolation and estimation.

= Providing a common framework for calibration, for all (or many?) kinds of surveys at Statistics
Belgium; providing a common language and a common tool for all statisticians.

= [nitiation to our software g-CALIB-S. Since many people currently work in completely different
ways and with different tools, working on its implementation will automatically result into an
extremely critical evaluation of the software and, more generally, the methodology.

Research in our statistical office should primarily be application-oriented, since our ultimate task is
simply the production of figures. However, high-quality statistics necessitate acritical evaluation of all
aspects over and over again. Appropriate statistical tools must therefore be introduced, such that the
high demands for quality can be met in an optimal and contemporary way. We have to be prepared for
step-by-step integration of more complex systems in our daily work, and this requires a good
understanding of these tools and the methods behind them. So it will be clear that qualified people
have to contribute in managing the implementation and use of such systems. This requires research
and reflection!

It is hoped that subject matter specialist and methodologists will co-operate closely in the near future,
and elaborate on the implementation of generalised calibration methodology in a uniform way.
Experience so far indicates that this is not the easiest part, since, among other things, databases are not
immediately designed with calibration in mind, or since preceding phases of the surveys are not
automated in such away that directly useable data files are available. Software, system and database
designers too will play an important role in successful implementation of the methodol ogy.

People outside our institute have shown their interest in these SPSS modules. Therefore, we decided to
elaborate further on the development of these modules. We hope to be ready with a slightly extended
version in the next few months. Our first goal is the implementation of a data management modul e that
allows flexible integration of either individual-level or cluster-level auxiliary information, or both.
Besides this, auser friendlier interface is envisaged too.

| believe that this text demonstrates the power of mathematical formalism and abstraction. As soon as
a basic, but sound mathematical framework is defined or discovered, new results will follow more
easily, and existing techniques are likely to be more easily recognized merely as special instances of
the same general method or model. A forma mathematical language (of calibration methodology)
turns out to be a very efficient way of communication, (un)fortunately only possible to be “spoken” in
written documents. | was often seduced by the attractiveness, excitement and efficiency of
mathematical formulation and derivation. This partly explains why the numerical illustrations are
rather limited in number and in length and thoroughness.
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This work might give indications of future developments in survey methodology — especialy its
implementation — at Statistics Belgium. At the end the entire survey process should be an integrated
system, wherein each step takes into account what has been or what will be going on in preceding or in
subsequent steps. While working on different practical applications, | was always impeded in
producing results, due to inconsistencies between results in one step and things that should be donein
the light of calibration. One seemingly trivial, but no less fundamental problem is that variables used
in different steps are not always compatible with variables to be used in subsequent steps, or that
variables used in preceding steps are often not easily understood. Thisistrue for the variable' s values,
but also for their description. Consequently, we should strive working on (the same) basic files as
much as possible, in each step of the survey process. In other words, the number of basic files should
be reduced to an absolute minimum. Transformations of basic data files and databases, be they survey
step specific or subject matter specific, should be archived as well-documented computer programs
(SQL, SPSS syntax, ...), rather than as supplementary datafiles.
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VIILA SPSS® GENERALISED CALIBRATION MODULES
VII.A.1  Thecore modules g-PREPARE.sps and g-CALIB-S.sps

These syntax modules can be obtained from the author at the following address:

Dr. Camille VANDERHOEFT
Statistics Belgium

Rue de Louvain, 44

B-1000 Brussels

BELGIUM

e-mail: cami | | e. vander hoef t @t at bel . mi neco. f gov. be

The software is devel oped under SPSS® 9.0 for Windows Base. We' ve run it also, with success, under
SPSS® 8.0 for Windows Base, extended with the Advanced Statistics module that provides the matrix
language.

Write or mail to the above address for support too.
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VII.LA.2  Theauxiliary module g-DESI GN.sps

kkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ik khkhkhkhkhkhkhkhk k ki ki, k k k k k ****%

* g_DESI GN. sps

*

Macros to construct the design matrix for a calibration node

*
*
*

* ok ok ok ok

C. VANDERHOEFT & E. WAEYTENS 28/ 06/ 00
****************************************************************************.
* Avai |l abl e macros : *
*  DesCl, DesC2, DesC3, DesClZz, DesC2Z, DesC3Z *

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhkhkhk k ki, k,k,k,*,**%

* DesCl : creating indicator variable matrix for 1 categorical var.

define DesCl(var=!tokens(1l) / des=!tokens(l) / |ab=!tokens(1l)).

compute !des = design(!var).

compute !lab = make(1, ncol (!des),0).

loop #J = 1 to ncol (!des).

compute !lab(1,#J) = mmax(!var & !des(:,#J)).

end | oop.

print ncol (!des) / title="Macro DesCl executed; nunber of columms created :'.
l'end defi ne.

* DesC2 : creating indicator variable nmatrix for 2 categorical vars.

define DesC2(varl1l=!tokens(1l) / var2=!tokens(1)
/ des=!tokens(1) / |ab=!tokens(1) / p=!tokens(1)).
conpute #desl = design(!varl).
comput e #des2 = design(!var?2).
conpute !des = make(n, ncol (#desl)*ncol (#des2),0).
compute !lab = make(1, ncol (!des),0).
loop #1 = 1 to nrow!varl).
compute !des(#l,:) = kroneker (#desl(#l,:), #des2(#l,:)).
end | oop.
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loop #J = 1 to ncol (#desl).
|l oop #K = 1 to ncol (#des2).
conpute #M = (#J-1)*ncol (#des2) +#K.
compute !lab(1,#M = mmax(10**!p * lvarl & #desl(:, #J)
+ lvar2 & #des2(:, #K)).
end | oop.
end | oop.
print ncol (!des) / title="Macro DesC2 executed; nunmber of colums created :'
l'end defi ne.

* DesC3 : creating indicator variable matrix for 3 categorical vars.

define DesC3(varl1l=!tokens(1) / var2=!tokens(1l) / var3=!tokens(1)
/ des=!tokens(1) / |ab=!tokens(1) / p=!tokens(1)).
conput e #desl design(!varl).
conput e #des2 desi gn(!var2).
conmput e #des3 desi gn(!var 3).
comput e !des = make(n, ncol (#desl) *ncol (#des2) *ncol (#des3), 0).
compute !lab = make(1, ncol (!des),0).
loop #I/ = 1 to nrow(!varl).
comput e !des(#l,:) = kroneker (kroneker (#des1(#l,:), #des2(#l,:)), #des3(#l,:)).
end | oop.

loop #J = 1 to ncol (#desl).
|l oop #K = 1 to ncol (#des2).
loop #L = 1 to ncol (#des3).

compute #C = (#J-1)*ncol (#des2) *ncol (#des3)
+(#K- 1) *ncol (#des3)

+ #L.
conpute !lab(1,#C) = mmax(10**(2*!p) * lvarl & #desl(:,#J)
+ 10**1p * lvar2 & #des2(:, #K)
+ lvar3 & #des3(:,#L)).
end | oop.
end | oop.
end | oop.

print ncol (!des) / title="Macro DesC3 executed; nunmber of colums created :'
'end defi ne.
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* DesClz : splitting up a quantitative var over categories of 1 var

defi ne DesClZ(var=!tokens(1l) / zet=!tokens(1l) / des=!tokens(1l) / |ab=!tokens(1)).
compute !des = design(!var).

compute !lab = make(1, ncol (!des),0).

loop #J = 1 to ncol (!des).

compute !lab(1, #J) mrax(!var & !des(:,#J) * 10).

compute !des(:, #J) ldes(:,#J) & !zet.

end | oop.

print ncol (!des) / title=" Macro DesClZ executed; nunber of colums created :'.
'end defi ne.

* DesC2Z : splitting up a quantitative var over cells of 2 vars.

defi ne DesC2Z(var 1=!tokens(1) / var2=!tokens(1) / zet=!Itokens(1)
/ des=!tokens(1l) / lab=!tokens(1) / p=!tokens(1)).

comput e #desl = design(!varl).

comput e #des2 = design(!var2).

comput e !des = make(n, ncol (#desl) *ncol (#des2),0).

compute !lab = make(1, ncol (!des),0).

loop #I/ = 1 to nrow!varl).

compute !des(#l,:) = kroneker (#desl(#l,:), #des2(#l,:)).

end | oop.
loop #J = 1 to ncol (#desl).
|l oop #K = 1 to ncol (#des2).

conpute #M = (#J-1)*ncol (#des2) +#K.

conpute !l ab(1,#M mrax((10**!'p * lvarl & #desl(:,#J) + !var2 & #des2(:,#K)) * 10).
compute !des(:,#M ldes(:,#M &* !zet.

end | oop.

end | oop.

print ncol (!des) / title="Macro DesC2Z executed; nunber of colums created :'

l'end defi ne.

* DesC3Z : splitting up a quantitative var over cells of 3 vars.
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defi ne DesC3Z(varl1l=!tokens(1) / var2=!tokens(1l) / var3=!tokens(1l) / zet=!tokens(1)
/ des=!'tokens(1) / |ab=!tokens(1) / p=!tokens(1)).

conput e #desl design(!varl).

conput e #des2 desi gn(!var2).

conmput e #des3 desi gn(!var 3).

comput e !des = make(n, ncol (#desl) *ncol (#des2) *ncol (#des3), 0).

compute !lab = make(1, ncol (!des),0).

loop #I/ = 1 to nrow!varl).

compute !des(#l,:) = kroneker (kroneker (#des1(#l,:), #des2(#l,:)), #des3(#l,:)).

end | oop.

loop #J = 1 to ncol (#desl).
|l oop #K = 1 to ncol (#des2).
loop #L = 1 to ncol (#des3).

compute #C = (#J-1)*ncol (#des2) *ncol (#des3)
+(#K- 1) *ncol (#des3)
+ #L.
compute !l ab(1, #C)

mrax(10**(2*!p) * lvarl & #desl(:,#J)

+ 10**1p * lvar2 & #des2(:, #K)
+ lvar3 & #des3(:,#L)).
compute !des(:,#C) = ldes(:,#C) & !zet.
end | oop.
end | oop.
end | oop.

print ncol (!des) / title=" Macro DesC3Z executed; nunber of colums created :'.
lend defi ne.
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VII.B SPSS SYNTAX FILES FOR THE HBS AND TUS

VII.B.1  Syntax to preparefor calibration of TUS at individual, household, or integrated individual and household level

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khkhkhkhkhkikhkkhkk*x*x

* Prepare_TUSdat a. sps *,
******************************************~k*********~k*~k************************.
* This syntax program prepares TUS 1999 data for calibration, taking Phase | *.
* sanpling weights (HBS 1999) into account.

Survey data are prepared for different types of calibration:

- using individual auxiliary data (X d,t) ->ind. g-weights

- using individual auxiliary data (H-,d+,t) -> restricted ind. g-weights

- using household auxiliary information (Z,d~,s) -> HH g-weights

- using ind. and HH aux. information ((Z/ H),d~ (s'|t')') -> new HH g-wghts
(Calibration totals s and t are not created here.)

results

Two series (approximtions) of sanpling weights are avail able, but

shoul d be very close, since the series are close.

The sanpling weights can be ignored!

EE R R I S S S S S S S S S S I I I S S R S R I S S I S I S I S A S S I S I Sk I S S S S S S I

b S N T R R N R N N N T I N T R

Input files: TBS-extractie.sav (TUS 1998 and 1999 i ndi vi dual data)
Sanmpl eWei ght s. sav (Phase | sanpling weights HBS 1999)

Auxil. files: TUS-1999. sav (interm: reduced TBS-extractie.sav)
SWéi ght s- HBS99. sav (red. Sanpl eWights., keyed and sorted)
Dupl i cat es. sav (internedi ate)
TUS99- to Xd data.sav (ready to create design matrix)
TUS99- to Zd data.sav (ready to create design matrix)
TUS99- TEMP_H (H, d~; erased)

Qut put files: TUS99-Basi clnd. sav (BASI C DATA: Ind. and HH i nformation)
TUS99- Xd dat a. sav (X d for cal. at Ind. |evel)
TUS99- Hd dat a. sav (H~,d+ : clustering, restricted cal.)
TUS99- Zd dat a. sav (Z,d~ for cal. at HH | evel)
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* TUS99- Vd dat a. sav (V,d~ : for cal. at Ind. + HH | evel) *.

kkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk ki khkhkhkhkhkhkhkhkhkhkhk ki khk ki ki ki k ik k ki ik ki, k ki, k ki *****

* Store current environnent vari abl es.
pr eserve.
* Reset environnent vari abl es.

set nxmenory = 500000.

set workspace = 200000.

set nxl oops = 35000. /* Should be at |east the nunber of observations.
* Load the macros for creation of design matrix.

| NCLUDE FILE = ' C:\803-bntnew\ Cal i brati on\ g_DESI G\\ g- DESI GN. SPS' .

*$EFSFTEFTTSFTSFPSISFSTFSES$ESS  SECTION 1 $S3$SFSFFESF SIS SFSESSSSSSS* .

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk khkkrkkrkk*x*x

* Start preparing basic individual auxiliary data TUS99- Basi cl nd. sav *,

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk khkikhkkrkk*x*x

* Expl ore TUS data file.
GET FILE "C \ Actuaris_stage\ Cases\ TUS\ TBS- extracti e. sav".
*** Year of interview (weekday and weekendday).

STRI NG year1l year2 (A4).

COWPUTE yearl = substr(agdatse, 1,4).
COWPUTE year2 = substr(agdatwe, 1, 4).
FREQUENCI ES VARI ABLES=year 1 year 2.

COVMPUTE yr equal =0.

| F (yearl = year2) yrequal =1

VARI ABLE LABLES yrequal 'Are interview years equal ?'.
FREQUENCI ES VARI ABLES=yr equal .
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*** Elimnate if one inteview day felt in 1998.

SELECT | F (year1<>'1998" AND year2<>'1998').
CROSSTABS

/ TABLES=year1 BY year2

/| FORVAT= AVALUE TABLES

/ CELLS= COUNT .

*** Check interview nonths.

STRI NG nont hl nont h2 (A2).
COVMPUTE nont hl = substr (agdatse, 6, 2).
COMPUTE nont h2 = substr (agdatwe, 6, 2).
FREQUENCI ES VARI ABLES=nont h1 nont h2.
CROSSTABS

/| TABLES=nont h1 BY nont h2

/| FORVAT= AVALUE TABLES

/ CELLS= COUNT .

* Prepare TUS 1999 respondent file for mergi ng and save (renaned).

SORT CASES BY nen (A).

SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS- 1999. sav" / COVPRESSED.

* Prepare file with sanpling weights: renove HHs with duplicate key (nen).
GET FILE="C. \ Actuari s_st age\ Cases\ HBS\ Sanpl eWi ght s. sav".

*** Construct HH nunber, as in TUS data file (of respondents).

COMPUTE nen = TRUNC( HBEno/ 1000) .

FORVATS nen (F6).
SORT CASES BY nen (A).
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SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ HBS\ SWei ght s- HBS99. sav"
| COMPRESSED.

*** | dentify duplicates in key variable 'nen'.

COWMPUTE duplicl = (men=LAG nen, 1)).
VALUE LABELS duplicl 1 'Duplicate key values in MEN (HH nunber)'.
FREQUENCI ES VARI ABLES=dupl i cl.

SELECT | F (duplicl=1).

SORT CASES BY nen (A).

SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ HBS\ Dupl i cat es. sav"
| KEEP=nen duplicl / COWPRESSED.

MATCH FI LES / FI LE="C: \ Act uari s_st age\ Cases\ HBS\ SWei ght s- HBS99. sav"
/ TABLE=" C:\ Act uari s_st age\ Cases\ HBS\ Dupl i cat es. sav'
/ BY men.
VALUE LABELS duplicl 1 'Excluded cases (HHs with duplicate key)'.
FREQUENCI ES duplicl.

*** Delete cases with duplicate key MEN.

SELECT I F (sysm s(duplicl)).

* Add sanpling weights to TUS 1999 respondents.
MATCH FI LES / FI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS- 1999. sav"
| TABLE=*
/ BY nen.
*** Elimnate HHs sel ected for HBS pilot survey (nov-dec 1998).
SELECT | F (hbeno >= 300000).

CROSSTABS
| TABLES=year1 BY year?2
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| FORVAT= AVALUE TABLES

[/ CELLS= COUNT .
FREQUENCI ES VARI ABLES=nont hl nont h2.
CROSSTABS

[ TABLES=nont h1 BY nont h2

/| FORMAT= AVALUE TABLES

[/ CELLS= COUNT .

*** Save final TUS Basic file, with respondi ng individual s.
*** Define overaal |abels.

VALUE LABELS oplgraad 1 "LO" 2 "LMO" 3 "HMJ VS" 4 "HNUO' 5 "UNI".
SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS99- Basi cl nd. sav"
/ DROP=agdat se, wcodeday, wd1 TO wdl11, agdat we, zcodeday, zd1l TO zd11,
year 1, year 2, yrequal , nont hl, nont h2, sector, taalrol, duplicl
| COMPRESSED.

*$EPPSPPEPSSPPSPPSPPSPSSP$SS$SSS  SECTION 2 $5$$53$53$5S$5S$SP$SP$SS$SS$SSS* .

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khkhkhk khkikrkkkk*x*x

* Start preparing individual auxiliary data: TUS99- to Xd data. sav *,

kkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk khkhkhk ki khk ki khkhkhk k ik k ki k ik, k k ki ki, k k,****%

GET FILE="C \ Actuari s_st age\ Cases\ TUS\ TUS99- Basi cl nd. sav".
*** Create final auxiliary variables and conplete dictionary.

VARl ABLE LABELS respnr "ID of Ind in HBS/ TUS'
regi on "Regi on of residence of Ind s HH
nmen "HH ID in HBS/ TUS (=cluster)"
sexe "Sex of Ind".

***x% Nonth of participation (for HBS).
COWUTE nont h = TRUNC( men/ 10000) - 2.
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VARI ABLE LABELS nmonth "Month of interview (for HBS)"
VALUE LABLES nonth 1 "Jan" 2 "Feb" 3 "Mar" 4 "Apr" 5 "May" 6 "Jun"
7 "Jul" 8 "Aug" 9 "Sep" 10 "Ckt" 11 "Nov" 12 "Dec".

***x% Age in 6 categories: AGE6.
RECCDE age (LOWEST thru 29 = 1) (30 thru 39 = 2) (40 thru 49 = 3)
(50 thru 59 = 4) (60 thru 69 =5) (70 thru H GHEST = 6) | NTO age6.
VARI ABLE LABELS age6 "Age of Ind in 6 ctgrs".
VALUE LABELS age6 1 "< 30" 2 "30-39" 3 "40-49" 4 "50-59" 5 "60-69" 6 "70 +"

***** Renanme education variable.
RENAVE VARI ABLES (opl graad = educhb).
VARI ABLE LABELS educ5 "Hi ghest degree of education of |nd".

*** Save what is strictly needed.

SAVE OUTFI LE="C: \ Actuari s_stage\ Cases\ TUS\ TUS99- to Xd dat a. sav"
/ KEEP=r espnr, region, nonth, nmen, sexe, age6, educ5, sw.i_s, sw.i
| COVPRESSED.

SYSFILE I NFO ' C:\ Actuaris_stage\ Cases\ TUS\ TUS99- to Xd data.sav'.

*** Statistics for the new file.

NEW FI LE

GET FILE="C: \ Actuaris_stage\ Cases\ TUS\ TUS99- to Xd data. sav".
FREQUENCI ES VARI ABLES=r egi on, nont h, sexe, age6, educbh.

VEEI GHT BY sw_i _s.

FREQUENCI ES VARI ABLES=r egi on, nont h, sexe, age6, educb.

VEEI GHT OFF.

***x% Matrix programto create a desired design matrix X, and
***x* finally the survey data input file for g-CALIB-S.

NEW FI LE
MATRI X.
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***** Read data from variables into vectors.

get case /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd dat a. sav'

get strl /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd dat a. sav'

get str2 /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd dat a. sav'

get clus /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd dat a. sav'

get sex /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd data. sav'

get age /file="C \Actuaris_stage\ Cases\ TUS\ TUS99- to Xd data. sav'

* 11 Mssing values of EDUC5 are classified as LO (=1).

* They coul d al so be ignored conpletely.

get edu /file="C\Actuaris_stage\ Cases\ TUS\ TUS99- to Xd data. sav'
/variables = educ5 /m ssing = ACCEPT /sysm s = 1.

get weil /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd dat a. sav'

get wei2 /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Xd dat a. sav'

conpute N = nrow case).
print N/ title = 'Nunber of cases processed :

***x% Compute stratumvariable if conbination of Region and Mnth,
***x*% or if other period than Month is used.

***** Prepare ternms of maxi mal calibration nodel

* 1 + sex + age6 + educ5 + 3rd order interactions.

* (region and/or nonth as calibration stratumvari ables).
compute X0 = make(N, 1, 1) [* Term 1
DesCl var=sex des=XS | ab=LabS [* Term Sex
DesCl var=age des=XA | ab=LabA /* Term Age6
DesCl var=edu des=XE | ab=LabE /[* Term Educb

***x% Store design matrix, assigning appropriate names.
*xx%x " Default' STRATUMis Region, Month is included.
*rxx%x "Default' WEIGHT is Sw.i_s, Sw.i is included.

save {case,strl,str2,clus,weil, weiZ2, X0, XS, XA, XE}

[ vari abl es=respnr.

/variabl es = region.
/vari abl es = nont h.
/[variables = nmen
[vari abl es = sexe.
/variabl es = age®6.
/variables = sw.i_s.
/variables = sw.i.

*/.

*.

*/.

*/.

foutfile = 'C \Actuaris_stage\ Cases\ TUS\ TUS99- Xd data.sav' /variables =
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CASE, STRATUM nont h, CLUSTER, VEI GHT, sw_i, X0, S1,S2, Al to A6, El to E5.

**xx*x End of matri x nodul e.
END MATRI X.

NEW FI LE.

kkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ik khkhkhkhkkhkrkrkk*x*x

* End of preparing individual auxiliary data (X, d) *,

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk k ik khkhkhkhkkrkk*x*x

*$EPPSPTEFPEPPSPPSPPSPTEP$SS$ESS  SECTION 3 $53$53$5P$SS$SSPSPSSFS PSS SSS* .

kkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhkhkhkhk ki khkhkhk khk ki ki k k ki k ik ik k ki, k k k k k k,* k,****%

* Start preparing individual auxiliary data (H-,d+): clustering *,
* The DESIGN matrix X nust be fully specified first *,
* This could be omritted if clustering would be integrated i n g- PREPARE *,

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk khkikhkkrkk*x*x

GET FILE="C. \ Actuaris_stage\ Cases\ TUS\ TUS99- Xd dat a. sav".
AGGREGATE

[/ OUTFI LE=* [/ BREAK=cl ust er

/case = M N(case) /stratum = MEAN(stratum /nonth = MEAN( nont h)

/wei ght = SUMweight) /sw.i = SUMsw.i)

/X0, S1,S2, Al to A6, E1 to E5 = MEAN( X0, S1,S2, Al to A6, E1 to E5).
SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS99- Hd dat a. sav" [/ COVPRESSED.

NEW FI LE.

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhk khkhkhkhkhkrkrkk*x*x

* End of preparing individual auxiliary data (H-, d+) *,

*******************************************************************************
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*$EFSFTEITTSFTSIPSIPSISEFSES$ESS  SECTION 4 $SF$SFESTESFSIPSF$SFSESS S SSS* .

kkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk ki khk ki ki k ik ik ik k k ik k k k k k k k k,******%

* Start preparing household auxiliary data (Z, d~) *,

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhkhkhkhkikhk khkk*x*x

* Sel ect RPs from basic individual data file.

GET FILE=" C. \ Actuaris_stage\ Cases\ TUS\ TUS99- Basi cl nd. sav' .
SELECT IF (suite = 1).

*** Create final auxiliary variables and conplete dictionary.

VARI ABLE LABELS respnr "ID of RP in HBS/ TUS"
regi on "Regi on of residence of HH'
men "HH ID in HBS/ TUS".

***x*% Nonth of participation (for HBS).
COMPUTE nont h = TRUNC( nmen/ 10000) - 2.
VARI ABLE LABELS nonth "Month of interview (for HBS)".
VALUE LABLES nmonth 1 "Jan" 2 "Feb" 3 "Mar" 4 "Apr" 5 "May" 6 "Jun"
7 "Jul" 8 "Aug" 9 "Sep" 10 "Okt" 11 "Nov" 12 "Dec".

***x* Age in 6 categories: RPAGESG.
RECCDE age (LOWEST thru 29 = 1) (30 thru 39 = 2) (40 thru 49 = 3)
(50 thru 59 = 4) (60 thru 69 =5) (70 thru H GHEST = 6) | NTO RPage6.
VARI ABLE LABELS RPage6 "Age of RP in 6 ctgrs".
VALUE LABELS RPage6 1 "< 30" 2 "30-39" 3 "40-49" 4 "50-59" 5 "60-69" 6 "70 +".

***** Renane education variable.
RENAVE VARI ABLES (opl graad = RPeduch).
VARI ABLE LABELS RPeduc5 "Hi ghest degree of education of RP".

*** Save what is strictly needed.
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SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS99- to Zd dat a. sav"
/ KEEP=r espnr, region, nonth, men, HHsize, RPage6, RPeduc5, sw.i_s, sw.i
| COMPRESSED.

SYSFI LE I NFO ' C:\ Actuaris_stage\ Cases\ TUS\ TUS99- to Zd data.sav'.

*** Statistics for the new file.

NEW FI LE.

GET FILE="C. \ Actuaris_stage\ Cases\ TUS\ TUS99- to Zd data. sav".
FREQUENCI ES VARI ABLES=r egi on, nont h, hhsi ze, r page6, r peduc5.

VEEI GHT BY sw_i _s.

FREQUENCI ES VARI ABLES=r egi on, nont h, hhsi ze, r page®6, r peduc5.

VEEI GHT OFF.

***x% Matrix programto create a desired design matrix Z, and
***** finally the survey data input file for g-CALIB-S.

NEW FI LE.
MATRI X.

***** Read data from variables into vectors.

get case /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Zd data.sav' /variabl es=respnr.

get strl /file="C \Actuaris_stage\Cases\ TUS\TUS99- to Zd data.sav' /variables = region.
get str2 /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Zd data.sav' /variables = nonth.
get clus /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Zd data.sav' /variables = nen.
get siz /file="C\Actuaris_stage\Cases\ TUS\ TUS99- to Zd data.sav' /variables = HHsi ze.
get age /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Zd data.sav' /variables = RPage6.
* 3 Mssing values of RPEDUCS are classified as LO (=1).
* They coul d al so be ignored conpletely.
get edu /file="C \Actuaris_stage\ Cases\ TUS\ TUS99- to Zd data. sav'

/variables = rpeduc5 /mssing = ACCEPT /sysnis = 1.
get weil /file="C \Actuaris_stage\Cases\ TUS\TUS99- to Zd data.sav' /variables = sw.i _s.
get wei2 /file="C \Actuaris_stage\Cases\ TUS\ TUS99- to Zd data.sav' /variables = sw..

conpute N = nrow case).
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print N/ title = '"Nunber of cases processed :

*****x Compute stratum variable if conbination of Region and Month
***x* or if other period than Month is used.

***** Prepare ternms of maxi mal calibration nodel

* 1 + HHsi ze + RPage6 + RPeduc5 + 3rd order interactions.
* (region and/or nonth as calibration stratumvari abl es).
compute X0 = make(N, 1, 1) /* Term 1 */.
DesCl var=siz des=XS | ab=LabS /* Term HHSI ZE */.
DesCl var=age des=XA | ab=LabA /* Term RPAge6 */.
DesCl var=edu des=XE | ab=LabE /* Term RPEduc5 */.

***x*% Store design matrix, assigning appropriate nanes.
***x*x% "Default' STRATUM is Region, Mnth is included.
*rxx%x "Default' WEIGHT is Sw.i_s, Sw.i is included.

save {case,strl,str2,clus,weil, weiZ2, X0, XS, XA, XE}
foutfile = 'C \Actuaris_stage\ Cases\ TUS\ TUS99- Zd data.sav' /variables =
CASE, STRATUM nont h, CLUSTER, VEEI GHT, sw_i ,
ZX0, ZSl1 to ZS5, ZAl to ZA6, ZEl to ZE5.

**xx*x End of matri x nodul e.
END MATRI X.

NEW FI LE

kkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khk ki khk ki ki k ik ik k ki k k k ik, ki, k k,k k,****

* End of preparing individual auxiliary data (Z, d~) *,

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khkikrkkkk*x*x

*$EPPSPPEPSSPPSPPSPPSP$SP$SP$SSS SECTION 5 $53$53$53$53$SS$SP$SP$SS$SS$SSS* .

- 162 —



kkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki ki khk ki khkhkhk ki khk khk khk ki k ik ik k k ik k k k ki, k k,**,****%

* Start preparing individual-household auxiliary data (V,d~) *.

kkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhkhkhkhk ki khkhkhk ki ki ki k ik k khk khk ki, k k k k k k ki, k *****%

*** Create data matrix H d~ (NOT H- !!1).

GET FILE="C: \ Actuaris_stage\ Cases\ TUS\ TUS99- Xd dat a. sav".
AGGREGATE

/ QUTFI LE=* / BREAK=cl ust er

/case = M N(case) /stratum = MEAN(stratum /nonth = MEAN(nont h)

/wei ght = MEAN(wei ght) /sw.i = MEAN(sw. i)

/ X0, S1,S2, Al to A6, E1 to E5 = SUM X0, S1,S2, Al to A6, El to E5).
SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS99- TEMP_H. sav" / COMPRESSED.

*** Merge individual with househol d data.

NEW FI LE.
MATCH FI LES
/ FI LE="' C:\ Actuaris_stage\ Cases\ TUS\ TUS99- Zd dat a. sav'
/ FILE="C: \ Actuari s_stage\ Cases\ TUS\ TUS99- TEMP_H. SAV"
/ RENAME sw i =drpl wei ght =drp2 cl uster=zclust nonth=znonth stratumrzstrat
/ BY case
/ DROP=dr p1 drp2.

* Test validity of matches.

CRCSSTABS
[/ TABLES=strat um BY zstrat
/| FORVAT= AVALUE TABLES
/ CELLS= COUNT.
CROSSTABS
/[ TABLES=nont h BY stratum
/| FORVAT= AVALUE TABLES
/ CELLS= COUNT.
CROSSTABS
| TABLES=npnt h BY znonth
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| FORVAT= AVALUE TABLES

[ CELLS= COUNT.
COVPUTE di f =0.
COVPUTE di f=cl ust er-zcl ust.
FREQUENCI ES di f.

* Save nerged design matri x.

SAVE QUTFI LE="C: \ Actuari s_st age\ Cases\ TUS\ TUS99- Vd dat a. SAV"
/ DROP zclust znonth zstrat dif / COVPRESSED.

kkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhkhk ki khk k ik ik ik k k k k k k k k k k,**,****%

* End of preparing individual-household auxiliary data (V,d~) *,

kkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki ki ki khk khkhkhk ki khk ki khk khk k ik ik ki k k k ki, k k,k k k k,****%

ERASE FI LE="C:\ Actuari s_stage\ Cases\ TUS\ TUS99- TEMP_H. SAV".
NEW FI LE

* Restore current environnment vari abl es.
restore.
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VII.C

SYNTAX FILES FORTHE TS

VII.C.1 Fromabasicindividual datafileto a household respondentsfile

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khkhkhkhkhkikhkkhkk*x*x

* TS Prepar eRespondi ngHH. sps *,
******************************************~k*~k**********************************.
* Purpose: create HH respondent file *,
* = file fromwhich survey data input file for g_CALIB-S can be *,
* construct ed *,
*******************************************************************************.
* Input files : @NPDATA = initial TS sanple of individuals *,
* @BDESI GN = sanmpling stratification information *,
* Qutput file : @UTDATA = responding HHs, with proper HH and RP's char's *,
* Working file(s) : AGG HH. sav *,
*******************************************************************************.
* Ot her program paraneters (macros, set through Prod. Fac. job) *,
* @WRKDI R = directory where everything is stored *,

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khkikrkkrkk*x*x

SET MXLOOP=100000.
SET MXMEMORY=200000.

DEFI NE @ressage(! positional !tokens(1)).
print /title="***** NESSAGE *****",
print /title=!1.

I END DEFI NE.

*E*E*X* Here we go!!.
mat ri x.
@VESSAGE "The initial sanmple of persons is read ...".

@VESSACGE "Haven't you forgotten the position of STAT_RSP ?".
end matri x.

— 165 —



***** From ASCI I file to SPSS data file.

* Read ASCI| file with conplete intial sanple of individuals.
* Only variabl es needed for calibration are read.
* I Position for STAT RSP depends on the TRI MESTER

data list file=@WRKDI R + @ NPDATA fi xed records=1
/1 TSHHNo 1- 8(F) NI SCOM 14- 18( F) AGE CY 21-22(F)
SEX 23-23(F) EDUC  24-24(F) PROF 25-26(F)
NN_I ND 29-39(F) NN _RP 40-50(F) STAT_RSP 52-52(A).

* Add information to DD (of working file).
* Check contents of working file.
matri x.

@VESSAGE "Inspect distribution of variables read frominput file ...".
end matri x.

FREQUENCI ES / VARI ABLES=ALL / FORVAT=CONDENSE LI M T(75).

matri x.

@VESSAGE "Persons w o NN of RP cannot be assigned to a HH, hence exclude ...".
end matri x.

***x%% Construct HH file.

A. Proper HH characteristics:
- Size of HH, and response at HH | evel
- Resi dence
- Nunmber of active nmenbers
- Age of youngest and ol dest HH nenber
(stored in tenporary file).

L R

matri Xx.

@VESSAGE "Proper HH information is created ...".
end matri x.

NUMERI C s.isRP (F11) /s.active (F1) /HHresp (F2).
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COWUTE s.isRP = 0.

IF (nn_ind = nn_rp) s.isRP =1.

RECODE stat_rsp (" "=0) ("R'=0) ("Y"'=1) INTO HHresp.

RECODE prof (1 thru 5=1) (6 thru 11=0) (ELSE=0) |INTO s. acti ve.
AGGREGATE QUTFI LEE@\WORKDI R + ' AGG- HH. sav' / BREAK TShhno

[ HHsi ze "Nor of HH nenbers (in sanple file)' = N

/n_HHresp ' Nor of responding nenbers in HH = SUM HHr esp)
lis_ RP "RP identified (by NN)' = MAX(s.isRP)
/niscom 'N'S code of residence' = MAX(ni scom
/n_active "Mn nbr of active nenbers in HH = SUM s. active)
/ m nage ' Age of youngest nenber' = M N(age_cy)

/ maxage ' Age of ol dest nmenber' = MAX(age_cy).

* B. HH characteristics fromRP:
* - Age, sex, educational |evel, and prof. status of RP
* - NN of RP.

matri x.
@VESSAGE "RP's characteristics are prepared as HH information ...".
end matri Xx.
SELECT IF (s.isRP = 1).
RENAMVE VARI ABLES (sex=RP_sex) (age_cy=RP_age) (educ=RP_educ)
(prof =RP_prof) (s.active=RP_act).
SORT CASES BY TShhno.

***x* Merge RP characteristics (in *) with proper HH characteristi cs.
mat ri x.

@VESSACGE "Proper HH and RP information are joined together ...".

end matri Xx.

MATCH FI LES FI LE=* / TABLEE@\ORKDI R + ' AGG HH. sav' /BY TShhno.

* Check contents of working file.

matri x.
@VESSAGE "I nspect distribution of characteristics in INNTIAL HH sanple ...".
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end matri x.
FREQUENCI ES / VARI ABLES=ALL / FORVAT=CONDENSE LI M T(75).

***x*x Sel ect respondi ng HHs.

SELECT IF (n_HHresp > 0).

matri x.

@VESSAGE "Responding HHs are selected ...".
end matri Xx.

**¥*x%* | ncl ude SAVPLI NG | NFORMATION in the HH respondent file.
matri x.

@VESSACGE "Sanpling strat. information is included in HH RESPONDENT file ...

@VESSACGE " Sanpling paraneters: from PSI ZE and SSI ZE ...".
@VESSAGE "An extra variable REGON is "automatically' included this way".
end matri Xx.

* Sampling stratification PROV : Province + Brussels (11).
COMPUTE Prov = TRUNC(ni scom 10000) .

I F ( TRUNC( ni sconi 1000) 21) Prov = 2.

I F ( TRUNC( ni sconi 1000) 23 OR TRUNC( ni scom 1000) = 24) Prov = 10.
I F ( TRUNC( ni sconi 1000) 25) Prov = 11.

FORVATS Prov (F2).
VARl ABLE LABELS Prov "Province - Brussels".
VALUE LABELS Prov

1 "Antwerpen" 2 "Brus-Brux" 3 "Wst-Vl aanderen” 4 "Qost-VlI aanderen”
5 "Hainaut" 6 "Liege" 7 "Linmburg" 8 "Luxenbourg" 9 "Nanur"

10 "Vl aans-Brabant" 11 "Brabant Wallon".

* Sampling stratification AgeSize : RPage-HHsi ze classes (17).
RECODE RP_age (Lowest thru 24 = 1) (25 thru 39 = 2) (40 thru 54 = 3)
(55 thru 64 = 4) (65 thru H ghest = 5) | NTO nagecl 5.

I F (nagecl5 = 1 AND n_HHresp = 1) AgeSize = 1.
I F (nagecl5 = 1 AND n_HHresp > 1) AgeSize = 2.
I F (nagecl5 = 2 AND n_HHresp = 1) AgeSize = 3.
I F (nagecl5 = 2 AND n_HHresp = 2) AgeSi ze = 4.
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I F (nagecl5 = 2 AND n_HHresp = 3) AgeSize = 5.
I F (nagecl5 = 2 AND n_HHresp > 3) AgeSize = 6.
I F (nagecl5 = 3 AND n_HHresp = 1) AgeSize = 7.
I F (nagecl5 = 3 AND n_HHresp = 2) AgeSize = 8.
I F (nagecl5 = 3 AND n_HHresp = 3) AgeSize = 9.
I F (nagecl5 = 3 AND n_HHresp > 3) AgeSize = 10.
I F (nagecl5 = 4 AND n_HHresp = 1) AgeSize = 11.
I F (nagecl5 = 4 AND n_HHresp = 2) AgeSize = 12.
I F (nagecl5 = 4 AND n_HHresp = 3) AgeSize = 13.
I F (nagecl5 = 4 AND n_HHresp > 3) AgeSize = 14.
|F (nagecl5 = 5 AND n_HHresp = 1) AgeSize = 15.
I|F (nagecl5 = 5 AND n_HHresp = 2) AgeSi ze = 16.
|F (nagecl5 = 5 AND n_HHresp > 2) AgeSize = 17.

VARI ABLE LABELS AgeSi ze ' RP-age - HH-size conbination'
VALUE LABELS AgeSi ze
1"0-24 1p" 2 "0-24 2+"
3 "25-39 1p" 4 "25-39 2p" 5 "25-39 3p" 6 "25-39 4+"
7 "40-54 1p" 8 "40-54 2p" 9 "40-54 3p" 10 "40-54 4+"
11 "55-64 1p" 12 "55-64 2p" 13 "55-64 3p" 14 "55-64 4+"
15 "65+ 1p" 16 "65+ 2p" 17 "65+  3+".

* Merge HH RESPONDENT file with transformation table
* and conpute the sanpling weights.
SORT CASES BY Prov (A) AgeSize (A).
MATCH FI LES / FI LE=* / TABLE=@\ORKDI R + @BDESI GN / BY Prov AgeSi ze.
COWPUTE SanpWei = Psize / Ssize.
VARI ABLE LABELS Psi ze "Nor. of HHs in the HH s popul ati on stratuni
/ Ssi ze "Nor. of HHs in the HH s sanple stratunt
/ SampWei " STR- SRS Sanpl i ng wei ght of the HH'.
matri x.
@VESSAGE "The SAMPLI NG WEI GHTS have finally be conmputed and included ...".
end matri Xx.

* Check contents of working file before saving.

matri x.
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@VESSAGE "I nspect distribution of characteristics in HH RESPONDENT sanple ...

end matri x.
FREQUENCI ES / VARI ABLES=ALL / FORVAT=CONDENSE LI M T(75).
SORT CASES BY prov.
SPLI T FI LE SEPARATE BY prov.
TABLES
/ FORVAT BLANK M SSINE "' . ")
/ OBSERVATI ON psi ze ssize sanmpwei
/ TABLES agesi ze BY (psize + ssize + sanpwei) BY prov
[ STATI STICS nmean( ) validn( ( NEQUAL5.0 )).
SPLIT FILE OFF.

***x* Response analyis.

matri x.

@VESSAGE "More informati on on RESPONSE/ NONRESPONSE can be produced ...

@VESSAGE "The only thing | need to do this is TIME (not nuch!)".
end matri Xx.

****x* Sort and save HH respondent sanpl e.

mat ri x.
@VESSAGE "Savi ng the HH RESPONDENT sanple ...".
@VESSACGE "The file is sorted on TShhno".
end matri x.
SORT CASES BY TShhno.
SAVE OUTFI LE=@\ORKDI R + @DUTDATA
/ DROP=s.isrp nagecl 5 stratum / COVPRESSED.

**xx% Cl ean up.
ERASE FI LE=@\ORKDI R + ' AGG HH. sav' .

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khkhkhkhkhkikrkkrkk*x*x

* End of creation of HH respondent file for TS

*

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk khk khk khkhkhkhkrkkrkk*x*x
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VII.C.2 Creation of a design matrix for household-level calibration

kkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk ki khk khk khk khk ki ki ki ki khk k ik ik ki k k k k k ki, k k,******%

* TS MakeHHDesi gnMatri x. sps *,
*******************************************************************************.
* Purpose: create design matrix for HH respondent file *,
* = the survey data input file for g CALIB-S *,
*******************************************************************************'
* |nput file : @UTDATA = HH respondent sanple *,
* Qutput files: @ESMAT = design matrix for HH respondent sanpl e *,
* TS- Cal Tot Structure. sav = aggregated versi on of @DESMAT *,
* Working file(s) : *,
*******************************************************************************.
* Ot her program paraneters (macros) *,
* @WRKDI R = directory where everything is stored *,

kkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khkhkhkhkhkhkhk khkhkhk khk ki ki khk khk k ik ik ik, k k k k ki, k k,*k,****

SET MXLOOP=100000.
SET MXMEMORY=200000.

DEFI NE @ressage(! positional !'tokens(1)).

print /title="***** NESSAGE *****",

print /title=!1.

I END DEFI NE.

¥rEX*X* Here we go!!.

mat ri x.

@VESSAGE "The HH respondent sample file is read ...".
end matri Xx.

GET FI LEE@\VORKDI R + @DUTDATA.

****x* Choose and recode calibration variables (nmust be nuneric).
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mat ri x.

@VESSACGE "Prepare potential variables for calibration ...".
@VESSACGE " ( Geogr aphi ¢, Soci o-denographic, HH conposition)"”.
end matri x.

* kK Geografic variables : Arrond, Prov, Region.

* ARROND : Arrondi ssenent (43).
COMPUTE arrond = TRUNC(ni scom 1000).
FORMATS arrond (F2).

VARI ABLE W DTH arrond(7).

VARI ABLE LABELS arrond ' Arrondi ssenent’ .

VALUE LABELS arrond 21 'Brussel' 11 'Antwerpen' 12 'Mechelen' 13 ' Turnhout'

23 '"Hall e-Vilvoorde' 24 'Leuven' 71 'Hasselt' 72 ' Muasei k'

73 ' Tongeren'

41 ' Aal st' 42 'Dendernonde' 43 'Eeklo' 44 'Gent' 45 ' CQudenaarde’

46 ' Sint-N klaas' 31 'Brugge' 32 'Diksnuide' 33 'leper’ 34 'Kortrijk'

35 'Oostende' 36 'Roeselare’ 37 '"Tielt' 38 'Veurne' 25 'Nvelles’

51 "Ath' 52 'Charleroi' 53 'Mons' 54 'Mouscron' 55 ' Soignies' 56 'Thuin'
57 'Tournai' 61 'Huy' 62 'Liege' 63 'Verviers' 64 'Waremme' 81 'Arlon'
82 'Bastogne' 83 ' Marche-en-Fanmenne' 84 'Neufchéateau' 85 'Virton'

91 'Dinant' 92 'Nanur' 93 'Philippeville'.

* PROV : Province + Brussels (11).

* COMPUTE prov = TRUNC( ni sconf 10000) .

*I'F (arrond = 21) prov = 2.

*I'F (arrond = 23 OR arrond = 24) prov = 10.

*I'F (arrond = 25) prov = 11.

*FORVATS prov (F2).

*VARI ABLE LABELS prov "10 Provinces + Brussel s".
*VALUE LABELS prov

* 1 "Antwerpen" 2 "Brussel" 3 "West-W aanderen" 4 "Qost- VI aanderen"
* 5 "Hainnaut" 6 "Liége" 7 "Linburg" 8 "Luxenbourg" 9 "Narur"

* 10 "Vl aanms-Brabant" 11 "Brabant Wall on".

* REG ON : Region (3).
*RECODE prov (2=1) (1=2) (7=2) (10=2) (3 thru 4=2) (ELSE=3)
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*FORMATS region (F1).
*VARI ABLE LABELS regi on "Regi on".
*VALUE LABELS region 1 "Brus-Brux" 2 "VlIaanderen" 3 "Wallonie".

* kK Soci o- denogr aphi ¢ vari ables : Agecat, Profcat, ProfAge.

RECCDE rp_prof (1=2) (2=1) (3 thru 5=3) (6 thru H GHEST=4) | NTO profcat.
RECCODE rp_age (LOWEST thru 24=1) (25 thru 39=2) (40 thru 54=3)
(55 thru 64=4) (65 thru H GHEST=5) | NTO agecat.
NUMVERI C pr of age (F1).
| F (profcat <= 3) profage = profcat.
| F (profcat 4 AND agecat <= 4) profage 4.
I F (profcat = 4 AND agecat = 5) profage 5.
VARI ABLE LABELS profcat "Professional category of RP"
/[ agecat "Age class of RP"
/ prof age "Conbi nation Prof-Age (old post-strat. var.) (RP)"

VALUE LABELS

profcat 1 "E+F" 2 "0" 3 "I" 4 "NR'
/agecat 1 "<=24" 2 "25-39" 3 "40-54" 4 "55-64" 5 "65+"
/profage 1 "E+F" 2 "0" 3 "I" 4 "NR <64" 5 "NR 65+".

* ok HH conposition variables : HHsize2, Active2, Adol

RECODE HHsi ze (1=1) (ELSE = 2) | NTO HHsi ze2.
RECODE n_active (0 = 1) (ELSE = 2) INTO Active2.
VARI ABLE LABELS HHsi ze2 "HH size cl ass"
Active2 "Presence of active HH nenbers".
VALUE LABELS
HHsi ze5 1 "single" 2 "2+ pers”
[Active2 1 "No" 2 "Yes".

*** | nspection of new vari abl es.

FREQUENCI ES VARI ABLES=r egi on arrond prov agecat profcat profage HHsi ze2 active2
/ FORMAT=CONDENSE.
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matri x.

@VESSAGE "Fi nd macr os

end matri x.

| NCLUDE FI LE=@OFTDI R + ' g- DESI GN. sps’ .

matri x.

@VESSAGE
end matri

matri x.

@VESSAGE

get
get
get
get
get
get
get
get
get

I D

SwW
STR
ST2
AGE
PRO
CoMm
HHS
ACT

"Start creation of design matrix ...

X.
"Desi gn
[file=*
[file=*
[file=*
[file=*
[file=*
[file=*
[file=*
[file=*
[file=*

matrix will be stored wi th other

/vari abl es=TShhno.
[ vari abl es=SampWei .
/vari abl es=regi on
/vari abl es=prov.
/vari abl es=agecat .
/vari abl es=pr of cat .
/ vari abl es=pr of age.
[ vari abl es=hhsi ze2.
/vari abl es=active2.

conpute N = nrowm I D).
print N/title=" Nunber of cases processed:'.

@VESSAGE "Preparing terns of calibration node
conpute X0 = make(N, 1, 1)

DesCl
DesCl
DesCl
DesCl
DesCl
DesC2
DesC2

var =AGE des=XAge | ab=Labage
var =PRO des=XPro | ab=LabPro
var =COM des=XCom | ab=LabCom
var =HHS des=XHHs | ab=LabHHs
var =ACT des=XAct | ab=LabAct
var 1=ACGE var 2=PRO des=XAgPr | ab=LabAgPr
var 1=HHS var 2=ACT des=XHsAc | ab=LabHsAc p=2

for creating design matrix ...

potential cal. vars.

[* Term 1

/* Term Agecat (5)

[* Term Profcat (4)

/* Term ConPrAg (6)

[* Term HHsize (2)

[* Term Active (2)

/* Term Agecat. Profcat
/* Term HHsize. Active
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@VESSACGE "Sugg. max. nod. 1 : (1 + Agecat*Profcat + HHsize*Active) * STRATUM'.
@VESSAGE "Sugg. max. nmod. 2 : (1 + ConPrAg + HHsize*Active) * STRATUM'.
@VESSACGE "STRATUM is set to Region; alternative stored as Prov".

@VESSAGE "Pay attention to order of |abels (Later: calibration totals!!) ...".

print {Labage}.
print {LabPro}.
print {LabCon}.
print {LabHHs}.
print {LabAct}.
print {LabAgPr}.
print {LabHsAc}.

@VESSACGE "Original data, design matrix and other vars. are stored ...

* Info Original vars Terns in DM
save {ID, SW STR, ST2, AGE, PRO, COM HHS, ACT, X0, XAge, XPr 0, XCom XHHs, XAct , XAgPr , XHsAc}
foutfil e= @WORKDI R + @ESMAT /vari abl es =

CASE, WEI GHT, STRATUM /* Fi xed nanes */
prov, agecat, prof cat, prof age, hhsi ze5, active2, /[* Oiginal variables */
x0, agel to ageb5, prol to pro4, coml to conb, /* Choose nanes for ... */
hhsl to hhs2, actl to act?2, [* ... O1 columms in DM */

apl to ap20, hal to ha4.

@VESSAGE "Col ums of DM are sumred OVER ALL STRATA ...".

comput e XO = csum( X0) .

comput e XAge = csum XAge).
compute XPro = csum XPro).
compute XCom = csum XConj.
compute XHHs = csum XHHs).
compute XAct = csum XAct).
comput e XAgPr = csum( XAgPr).
compute XHsAc = csum XHsAc) .
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@VESSACGE "I nspect |abels and overall sanple totals! ...".
print { 1, LabAge, LabPro, LabCom LabHHs, LabAct, LabAgPr, LabHsAc;
X0, XAge, XPro, XCom XHHs, XAct, XAgPr, XHsAc}.

end matri x.

matri x.
@VESSAGE "Load file with calibration design matrix ...".
end matri x.

get file= @NORKDI R + @DESMAT.

matri Xx.
@VESSAGE " Aggregating by STRATUM then inspect sanple totals of cal.vars. ...".
end matri Xx.
AGGREGATE

[/ OQUTFI LE=* / BREAK=st r at um

/x0, agel to age5, prol to pro4, coml to conb, hhsl to hhs2,

actl to act2, apl to ap20, hal to ha4

= SUM x0, agel to age5, prol to pro4, coml to conb, hhsl to hhs2,

actl to act2, apl to ap20, hal to ha4).

matri x.
@VESSAGE "Fromthe aggregated survey input file can the calibration totals ..."
@VESSAGE "... file be easily created; this is saved as TS-Cal Tot Structure. sav".

end matri x.
SAVE OUTFI LE=E@VWORKDI R + "TS- Cal Tot Struct ure. sav" / COVPRESSED.
matri X.

@VESSAGE "Finally, find calibrtion totals, and put themin TS Cal TotStructure. sav".
end matri x.
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VII.D SYNTAX FILES FOR AN APPLICATION ON LABOUR VOLUME AND LABOUR COMPENSATION

VII.D.1  Transformation of cross-tabulated data on labour volume and labour compensation

kkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki ki khk khk ki k ik, k *k ****%

Transf orm cr osst abs. sps
C. VANDERHCEFT Novenber 2000

Dat a provi ded by ANJA TERMOTE, statistician

khkkhkkhkkhkkhkhkkhkhkhkhkkhkhkhkhdhkhdkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkikhkikhkkrkkkx*x

*
*
*
*
*
*
*
* This programillustrates howto use the macros from g- DESI GN. sps for

* constructing the calibration design matrix, and how to create the survey
* data file that is one of the input files for the calibration nodul e

* g- CALI B- S. sps.

*

*

*

*

*

*

*

*

*

The original data are a cross-tabul ation of (weighted) totals of a
gquantitative variable, stored in colum format in the SPSS data file
C.\ Actuari s_St age\ Cases\ Anj a\ Cr osst abs. sav

We recommend to sort this file by the variable ‘Table and by all other
gualitative calibration variables used |ater.

b I T R R R T . S T B T I S .

khkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhdhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkikhkikrkkhkk*x*x

**xxk Set: @RI VE drive letter (e.g. "C\'") (for software and data)

* @OFTDIR = | ocati on of software

* @WORKDI R = work directory

* @ NPDATA = name of input file

* @ESMAT = and nane of output file.

DEFI NE @RI VE ()
e
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! END DEFI NE.
DEFI NE @OFTDI R ()
' 803- bncnew\ Cal i brati on\ g_DESI G\\ ' .
I END DEFI NE.
DEFI NE @\ORKDI R ()
"Actuaris_Stage\ Cases\ Anja\"'.
I END DEFI NE.
DEFI NE @ NPDATA ()
' Crosstabs. sav'.
I END DEFI NE.
DEFI NE @ESMAT ()
' Col | apsed_Dat a. sav'.
I END DEFI NE.
***x* | oad the macros.
| NCLUDE FILE = @RI VE + @OFTDI R + ' g- DESI G\. SPS'
***x*% (Cl ear working data file.
NEW FI LE.
**¥*x*x Start matrix nodul e.

matri x.

***** Read data from variables into vectors.
* (Vector nanes are arbitrary).

get se /file=@R VE + @\ORKDI R + @ NPDATA /vari abl es

get ed /file=@R VE + @\ORKDI R + @ NPDATA /vari abl es
get br /file=@RI VE + @\ORKDI R + @ NPDATA /vari abl es
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get cv /file=@RI VE + @\ORKDI R + @ NPDATA /vari abl es | ab_vol .

get st /file=@RI VE + @\ORKDI R + @ NPDATA /vari abl es t abl e.

conpute N = nrow(st).

print N/ title = 'Nunber of CELLS processed :'.

***x* Prepare terms of maximal calibration nodel

* 1 + Branch + Sex*Educ = 1 + Sex + Educ + Branch + Sex*Educ.

* It will allowto apply many alternative calibration nodels.
compute X0 = make(N, 1, 1) [* Term 1 *.
DesCl var=se des=XS | ab=Lab$S /* Term Sex *.
DesCl var=ed des=XE | ab=LabE /* Term Educ *.
DesCl var=br des=XB | ab=LabB /[* Term Branch *.

DesC2 varl=se var2=ed des=XSE | ab=LabSE p=1 /* Term Sex*Educ *.
***x% Prepare renaining input variable(s) for the calibration nodul e.
compute id = st*1000 + se*100 + ed*10 + br.
****x* Print original variables, conponents of design matrix and | abels.
print { 99, nrow(se), nrowed), nrow br), 99, nrow(st), 1,LabS, LabE, LabB, LabSE ;
id, se , ed |, br ,cv, st ,X0, XS, XE, XB, XSE }
[formats F4.
***x* Store original data and design nmatrix, assigning appropriate nanes.
save { id, cv, st, se, ed, br,
X0, XS, XE, XB, XSE }
/foutfile = @RI VE + @QWORKDI R + @ESNMAT /vari ables =
CASE, WEI GHT, STRATUM sex, educ, br anch,
X0, S1, S2, El1, E2, E3, B1, B2, B3, B4, B5, B6, SE11, SE12, SE13, SE21, SE22, SE23.

**x*%* End of matrix nodul e.
end matri x.
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***x* Joad file with calibration design matrix (for inspection).
* This is one of the input files for g-CALIB-S.

get file = @RI VE + @WORKDI R + @DESNAT.
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VII.D.2 Presentation of theresultsin cross-tabulations

kkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki khk ki ki khk k k ki, k k k k k ****%

* Estimat es. sps *,
* *.
* C. VANDERHOEFT Novenber 2000 *,
* *
****************************************************************************.
NEW FI LE.

CET FI LE=@\ORKDI R + ' V\EI GHTS. SAV' .
SORT CASES BY case.
SAVE OUTFI LE=@VORKDI R + ' V\EI GHTS. SAV' /| COVPRESSED.

NEW FI LE.
GET FlI LE=E@VORKDI R + @XDATA.
SORT CASES BY case.

MATCH FI LES / FI LE=* / TABLE=@\ORKDI R + ' Wi ghts. sav'
/ RENAME (stratum = dO) /BY case /DROP= dO.

SELECT IF (~ SYSM S(g_weiQ)).
SPLIT FI LE SEPARAT BY stratum
VEEI GHT OFF.

TEMPORARY.
NUMERI C T0O000000.
LEAVE T0000000.
VARI ABLE LABEL T0000000 ' Table Total '.
VALUE LABELS TO000000 O ' '.
TABLES
/ FORVAT BLANK M SSING'.")
/ OBSERVATI ON cal wei
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/ TABLES (sex > (educ) + TO000000) > cal wei

BY (branch + TO000000) > ( STATI STI CS)

BY (stratum + TO0000000 )

[ TITLE 'Estimated contingency table (CALWEI in table format)'
| STATI STI CS

sum ).

TEMPORARY.
TABLES
/ FORVAT BLANK M SSINE ' .")
/| OBSERVATI ON g_wei g
/ TABLES (sex > (educ)) > g weig
BY branch > (STATI STI CS)
BY stratum
[ TITLE 'Estinmated g-weights (GWEIGin table format)'
| STATI STI CS

sum( ).
NEW FI LE.

EXECUTE.
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VILE

VII.E.1

SPSS SYNTAX FILES FOR APPLICATION ON SBS

kkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ki ki khk khk ki k ik, k *k ****%

* SBS_g- DESI GN. sps *,
* *
* C. VANDERHCEFT Decenber 2000 *,
****************************************************************************.
* This programillustrates howto use the nmacros from g- DESI GN. sps for *,
* constructing the calibration design matrix, and how to create the survey *.
* data file that is one of the input files for the calibration nodul e *,
* g- CALI B- S. sps. *,
****************************************************************************.
* |nput file : *,
* @ NPDATA : UtimResp (A Sanple.sav (Conplete respondent sanple sA) *
* Qutput files : *,
* @ASI C : SBS-Sanple 4.sav (Final, possibly reduced sanpl e) *,
* @DESMAT : SBS Survey data.sav (Survey data file, with design matrix) *
EIR IR R R S b I R R I S R O I R O R R Sk R I R R I I I I Sk S I R I A R S R A

SET MXLOOP = 100000.
SET MXMEMORY = 200000.

*xxx%x Set: @OFTDI R | ocati on of software,

* @WORKDI R = work directory,
* @ NPDATA = nane of input file,
* @ESMAT = and nane of output file.

DEFI NE @OFTDI R ()
" C:\ 803-bntnew\ Cal i bration\g_DESI G\ " .
I END DEFI NE.

DEFI NE @\ORKDI R ()
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"C:\Actuaris_Stage\ Cases\ JeanMarie\'.
! END DEFI NE.

DEFI NE @ NPDATA ()
"UtimResp (A) Sanple.sav'.
I END DEFI NE.

DEFI NE @BASI C ()
' SBS- Sanpl e 4. sav'.
I END DEFI NE.

DEFI NE @ESMAT ()
'SBS Survey data.sav'.
I END DEFI NE.

DEFI NE @\DJFRAM ()
'SBS Cal -total s.sav'.

I END DEFI NE.

***x* Prepare data file: Select enterprises in NACEl category 4.

* Nunber NACE4 cat egori es.

* Conmpute enterprise identification | D ENT.

NEW FI LE.

GET FILE = @Q\ORKDI R + @ NPDATA.

SELECT | F nacel="4". /[* Omt if conplete sanple is processed*/

SORT CASES BY naced4.

SAVE OUTFI LE=@NORKDI R + @BASI C / COVPRESSED.

AGGREGATE / QUTFI LE=* / BREAK=nace4 / N BREAK=N.

COVWPUTE no_nace4 = $CASENUM

MATCH FI LES / TABLE=* /FI LE=@\WORKDI R + @BASI C / BY nace4.
SORT CASES BY no_nace4 clss_iii.

COWUTE id_ent = $casenum

SAVE OUTFI LE=@\ORKDI R + @BASI C / COVPRESSED.

***x* ] oad the macros for constructing the design matrix.
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I NCLUDE FI LE = @OFTDI R + ' g- DESI GN. SPS' .

**x%x% Start matri x nodul e.
matri x.

***** Read data from variables into vectors.

get ID/file=* /variables = id ent.

get SW/file=* /variables = weight. /* The sanpling weights are ready */
get A /file=* /variables = no_nhace4.

get B /file=* /variables = clss_iii

conpute N = nrowID).

print N/ title = '"Nunber of cases processed :'

***** Prepare terns of calibration nodel

compute X0 = make(N, 1, 1) /* Term 1 */.

DesCl var=A des=XA | ab=LabA [* Term NACE4 */.

DesCl var=B des=XB | ab=LabB /* Term CLSS || */.

DesC2 var 1=A var 2=B des=XAB | ab=LabAB p=2 /* Term NACE4.CLSS Il */.

compute STR = nake(N, 1,1).

***x* | nspect |abels, to assign nanmes to calibration vari abl es.

print {LabA} /title "NACE4 categories are net in the follow ng order:"

print {LabB} /title "NACE4 categories are net in the follow ng order:"

print {LabAB} /title "NACE4 categories are nmet in the follow ng order:".

**¥***x Store the design matrix, etc, assigning appropriate names. |Inspection

* of the NACE4 x CLSS Il table and the | abels has suggested the ordering
of the calibration variables for the margins of CLSS IIIl. Sinilar

*
* reordering is possible for the cell indicators,
* this is a lot of unnecessary work.
save { ID, SW STR, A B, X0, XA XB, XAB }
foutfile = @VORKDI R + @ESMAT /vari abl es = CASE
NO NACE4, CLSS Il1, X0, NACE4 01 to NACE4_21,
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126 vari abl es,



CLAS 4, CLAS 5, CLAS 1, CLAS 2, CLAS 3, CLAS 0,
NACLOO1 to NACL126.

print /title="**** THE REMAI NDER OF THI S PROGRAM | S TO HELP THE USER PREPARI NG'.
print /title="**** THE CALI BRATI ON TOTALS FI LE".
print /title="**** READ THE SYNTAX, OR OPEN LOGS I N THE VI EMER FOR | NSTRUCTI ONS" .

end matri x.
**x*x* End of matrix nodul e.

****x Joad file with calibration design matrix.
**¥*x*x Aggregate by STRATUM and inspect sanple totals of cal.vars.

get file = @G\WORKDI R + @ESMAT.

AGGREGATE
/ QUTFI LE=" Agg_Sanpl e. sav' /BREAK=stratum
/nace4_01 TO naced4_21 = SUM nace4_01 TO naced_21)
/clas_ 0 = SUMclas 0) /clas_ 1 = SUMclas_1) /clas_ 2
/clas_3 = SUMclas_3) /clas_ 4 = SUMclas_4) /clas_5
/n4cl 001 TO n4cl 126 = SUM n4cl 001 TO n4cl 126).

SUM cl as_2)
SUM cl as_5)

* | F SOVE CAL. VARS. HAVE ZERO SAVPLE TOTAL, THEN DELETE THESE VARI ABLES !'!!.

***x* Reload file with calibration design matrix, and nerge with basic file.
***x* The required population information is then available for cal cul ation
***x* of the "adjusted post-stratum popul ati on sizes", and for preparation

***x* of the calibration totals file.

GET FILE = @Q\ORKDI R + @DESMAT.

MATCH FI LES / FI LE=*

/ FI LEE@\ORKDI R + @BASI C

/ RENAME (clss_iii no_naced4 stratumweight = d0 d1 d2 d3)

/ DROP= dO0 d1 d2 d3.

* There is a perfect match if the variable MATCH has only the val ue zero.
COVMPUTE natch = case-id_ent.

FREQUENCI ES / VARI ABLES=nat ch.

* Calibration totals file: adjusted frane sizes.
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*SELECT IF (no_naced4 = 9 and clss_iii=0). /* For testing only */

TABLES
/ FORVAT BLANK M SSING('.")
/| OBSERVATI ON cal t ot
/ TABLES no_nhace4 > caltot
BY clss_iii > (STATI STICS)
| STATI STI CS
mean( ).

*xx%x AL CALI BRATI ON TOTALS CAN BE DERI VED FROM THIS TABLE: IT IS
*xx%x  SUGGESTED TO COPY THE TABLE TO A SPREADSHEET, AND FI NDI NG THE
*xx%x MARG NAL TOTALS | N ORDER TO PRODUCE THE CALI BRATI ON TOTALS
*xx%x  CORRESPONDI NG TO THE TERMS NACE4 AND CLSS |1l I N THE MODEL FORMULA.
*xxxx UNFORTUNATELY, THE CELL ENTRIES ARE NOT I N THE ' RI GHT' ORDER,
**xx% . e. NOT IN THE SAME ORDER AS THE CELL | NDI CATOR VARI ABLES ( NACL###)
**xx% | N THE SURVEY DATA | NPUT FI LE.
**xx% THEREFORE . ..
VEI GHT BY caltot.
AGGREGATE
[ OUTFI LEE@WORKDI R + " Aggr _Parti al . sav' /BREAK=stratum
/n4cl 001 TO n4cl 126 = SUM n4cl 001 TO n4cl 126).

**xx% WE HAVE THE CELL BENCHVARKS, AFTER DI VI DI NG BY THE SAMPLE SI ZES,
***x% | N THE Rl GHT ORDER NOW

*¥xxxk SOME MORE MANUAL WORK |'S REQUI RED TO CONSTRUCT THE BENCHVARKS FI LE.
*xxx% WE ALREADY PREPARE THE STRUCTURE . ..

GET FI LEE@WORKDI R + ' Agg_Sanpl e. sav' .

SAVE QOUTFI LEE@\ORKDI R + @\DJFRAM / COMPRESSED.

*xx&xx JUST FILL I N NOW THE RI GHT NUMBERS.

**¥*xxx DON T FORCGET TO DELETE VARI ABLES FOR WHI CH SAMPLE
**¥*x%x TOTAL OR BENCHVARK | S ZERO
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